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Abstract— Machine learning algorithms have been widely 

used in IoT application systems for predicting labels of input 
data streams from IoT sensors. Since data streams are not 
always stationary in real-world scenarios, underlying data 
distribution changes may cause a deterioration of the prediction 
performance that is known as concept drift. Existing concept 
drift detection methods often assume that complete and true 
labels for detecting the prediction errors are always available 
immediately after the prediction. However, such an assumption 
is not realistic in real IoT application systems. This paper 
experimentally investigates the robustness of six representative 
concept drift detectors against unreliable data streams 
containing the data with error labels and the data with no labels. 
Robustness is evaluated in terms of the average detection delay 
and precision by increasing the ratios of error-labeled and 
missing-label data in a synthetic data stream. Our experimental 
results show that Cumulative Sum (CUSUM), Page-Hinkley 
(PH), and Drift Detection Method (DDM) achieve relatively 
stable performances when the ratio of error-labeled data is less 
than 40%. With respect to the drift detection efficiency, 
CUSUM can be regarded as the most robust detector among 
other detectors tested in our experiments.  

Keywords—classifier, concept drift detection, data stream, 
internet of things, machine learning 

I. INTRODUCTION  
Exploring insights from the Internet of Things (IoT) [1] is 

attracting widespread interest in academia and industry due to 
ubiquitous applications of IoT systems. An extensive network 
of IoT devices and sensors produce a large volume of data 
streams in real-time. To derive insights from a vast amount of 
collected IoT data, machine learning techniques are often used 
for classifying and predicting the data. For instance, IoT 
systems deployed in a smart industrial factory may generate a 
huge quantity of time series data from different sensors [2]. 
By constructing a machine learning model from the collected 
data and applying the model to evaluate the production system, 
one can predict the performance of the system to improve the 
productivity and capacity of the plant. 

Data streams are typically stored in a non-persistent 
memory and processed on the fly, and hence analytic 
components such as machine learning models need to adapt to 
the distribution changes of data streams. Failures to adapt 
changes may cause an undesirable deterioration of the 
application performance, such as prediction accuracy. 
Considering a data classification task assisted by a supervised 
machine learning method, classification accuracy can degrade 
when facing the input data distribution change regarding the 
input features and the class labels. Such a problem is known 
as concept drift [3]. For real-world IoT applications, errors in 
label prediction may cause fault operations or unacceptable 
malfunctions. It is essential to detect a concept drift causing 
degraded predictions timely and accurately. 

 
Fig. 1.  A concept drift detection procedure 

Figure 1 shows a common procedure of concept drift 
detection for a machine learning-based label prediction 
system. When a pre-trained machine learning model receives 
input data from IoT sensors, it predicts the label for the data 
(e.g., the name of the recognized object). Then, the predicted 
labels are compared with the true labels to count the prediction 
errors. In most cases, the true labels are implicitly assumed to 
be provided by domain experts. A drift detector continuously 
monitors the error rates and alarms when any symptoms of 
concept drift are observed. For instance, when input data 
distribution changes, one can observe the increased number of 
prediction errors. Once a concept drift is detected, it requires 
updating the machine learning model with the recently 
received data to adapt to the data distribution change. In the 
above detection procedure, the true labels are essential for 
knowing prediction error rates. However, it is not realistic to 
assume complete labels are always given in IoT application 
systems. Real data streams are unreliable in terms of labels of 
arrival data because the online labeling process may entail 
manual operations. Therefore, some data may be unlabeled or, 
even worse, be wrongly labeled. Although unreliable data 
streams may create significant impacts on the concept drift 
detection performance, such aspects have not been deeply 
explored yet.   

In this paper, we experimentally investigate the robustness 
of the basic concept drift detection methods in terms of delay, 
precision, and efficiency by testing the detectors with 
unreliable data streams. We use the synthetic data stream 
Circles [4] for the experiments, which are applied in many 
data mining frameworks and regarded as a benchmark data 
stream for concept drift detecting tasks. We synthetically 
generate the unreliable version of Circles in which a part of 
labels in the data streams is transformed into error-labeled or 
missing-labeled data by specified ratios. For evaluating the 
performance of various drift detectors, we use the Tornado [5] 
framework to construct a Naïve Bayes-based classifier and 
detection models. The objective of our experiments is to 
evaluate the robustness of individual detectors instead of 
selecting the best detector in a specific performance measure. 
To this end, we choose six representative concept drift 



detectors and compare the average detection delays and 
precisions by varying the ratios of unreliable data streams. The 
experimental results show that the detection delay is 
increasing, while the precision decreases in most cases as the 
data stream becomes unreliable. For error-labeled data cases, 
the impacts on the delay and the precision are significant for 
all the drift detectors. In an extreme case, where half of the 
data stream is mixed with error-labeled and missing-label data, 
all the detectors lose their functionality except the detector 
using Cumulative Sum (CUSUM). For missing-label data 
cases, while the precision of drift detection is not much 
affected, the detection delay increases when the ratio of 
missing-label data increases. Despite its simple drift detection 
scheme, we observe that CUSUM achieves a notably stable 
performance compared with other detectors in most of the 
unreliable scenarios considered.  

The remaining part of the paper is organized as follows. 
Section II gives an overview of concept drift and introduces 
six drift detection methods. Section III discusses the 
robustness issue of existing concept drift detectors. Section IV 
provides the experiment configuration and results of the 
robustness evaluation using unreliable data streams. Finally, 
Section V gives our conclusion and future work. 

II. CONCEPT DRIFT DETECTORS 

A. Overview of concept drift  
1) Definition of concept drift: Concept drift in machine 

learning and data mining refers to changes in the relationship 
between input data and output result over time in the 
underlying distribution. The formal definition of concept drift 
between two time points can be specified by 

∃𝑋𝑋:𝑃𝑃𝑡𝑡0(𝑋𝑋,𝑦𝑦) ≠ 𝑃𝑃𝑡𝑡1(𝑋𝑋,𝑦𝑦), (1)   

where 𝑃𝑃𝑡𝑡0 denotes the joint distribution at time 𝑡𝑡0 between the 
set of input variables 𝑋𝑋 and the target variable 𝑦𝑦 and 𝑃𝑃𝑡𝑡1 is the 
joint distribution at time 𝑡𝑡1 (> 𝑡𝑡0) . Changes in data can be 
characterized as variations in the components of this relation 
[6]. Moreover, based on a set of input features distribution 
𝑃𝑃(𝑋𝑋)  and posterior probabilities 𝑃𝑃(𝑦𝑦|𝑋𝑋) , concept drift is 
classified into two types [3], namely real concept drift and 
virtual drift. Real concept drift refers to changes in 𝑃𝑃(𝑦𝑦|𝑋𝑋). 
Such a change can happen either with or without changes in 
𝑃𝑃(𝑋𝑋) . On the other hand, virtual drift occurs when the 
distribution of the incoming data changes (i.e., 𝑃𝑃(𝑋𝑋)). In this 
paper, we consider real concept drift that may impact the 
prediction accuracy, and hence a timely detection is essential.  

2) Diversity of concept drift: Considering how data 
distribution changes, a concept drift can be categorized into 
different types of drifts such as abrupt drift, gradual drift, 
incremental drift, and recurring drift [7]. If the original data 
distribution is suddenly substituted by another one and it 
affects the prediction accuracy, the drift is called as an abrupt 
drift. On the other hand, when the samples from the original 
data distribution decrease gradually and the samples of new 
data distribution start increasing, the drift can be called as a 
gradual drift. In this paper, we concentrate on the problem of 
gradual concept drift detection. 

B. Categorization of detectors 
As presented in the concept drift detection procedure (in 

Figure 1), a concept drift detector monitors the error rates of 
predictions and alarms when the drift is detected by decision 

rules. The basic drift detection methods can be categorized 
into three groups as follows [4].  

1) Sequential analysis-based approaches validate the 
prediction results after classifying work and output an alarm 
of drift while meeting a pre-set threshold. The memoryless 
detector Cumulative Sum (CUSUM) [8] and its evolving 
version Page-Hinkley (PH) [8], including Shiryae’s Bayesian 
test that depending on online thresholding are all belonged to 
this type. 

2) Statistical Process Control-based methods normally 
monitor and control continuous training processes via 
statistical techniques such as standard deviation of the 
constantly outputting error rates and the distance between 
adjacent errors of predictive results to detect concept drift. 
The Drift Detection Method (DDM) [9] that is known as a 
benchmark in this categorization, Early Drift Detection 
Method (EDDM) [10] and Exponentially Weighted Moving 
Average (EWMA) [11] are members of this group. 

3) Sliding-window-based detectors generally implement 
a fixed reference window to memorize the past information 
while a sliding detection window over the most recent 
samples. The prediction result distribution between two 
windows is compared by Hypothesis testing theory and with 
the null hypothesis indicating the distribution are equal, in 
turn, a drift is declared if the null hypothesis is rejected. The 
Adaptive Windowing (ADWIN) [12], SeqDrift detectors, 
Drift Detection Methods based on Hoeffding’s Bound 
(HDDM) [13] are some representatives of this family. 

C. Detectors for evaluation 
In our experiments in Section IV, we employ two 

representative detectors from each group since they are basic 
detectors that performed well under a variety of extensive data 
stream tests in the previous literature. The basics and 
characteristics of these detectors are briefly explained below: 

1) CUSUM: It is a classical change detection algorithm 
that gives an alarm when the mean value of the input data is 
significantly different from zero [8]. The CUSUM test is 
defined as follows:  

𝑆𝑆𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚(0, 𝑆𝑆𝑡𝑡−1 + (𝑚𝑚𝑡𝑡 − 𝛿𝛿)) (2)   

The decision rule: if 𝑆𝑆𝑡𝑡 > 𝜆𝜆 then it alarms and reset 𝑆𝑆𝑡𝑡 = 0. 
Here, 𝜆𝜆  is a threshold, 𝛿𝛿  corresponds to the acceptable 
magnitude of changes, and 𝑚𝑚𝑡𝑡 is the presently obtained value. 
This formula only detects changes in the positive direction. 
When negative changes need to be found as well, the min 
operation should be used instead of the max operation. In this 
case, a change is detected when the value of 𝑆𝑆𝑡𝑡  becomes 
below the (negative) value of the threshold. The CUSUM test 
is memoryless, and its accuracy depends on determining 
values of parameters δ in formula (2) and 𝜆𝜆. 

2) PH: A variant of the CUSUM algorithm is the Page-
Hinkley test [8], which is typically used for monitoring 
change detection in signal processing. It allows efficient 
detection of changes in the normal behavior of a process 
established by a model. This test considers a cumulative 
variable 𝑚𝑚𝑇𝑇, defined as the cumulated difference between the 
observed values and their mean value until the current 
moment: 

𝑚𝑚𝑇𝑇 = �(𝑚𝑚𝑡𝑡 − �̅�𝑚𝑇𝑇 − 𝛿𝛿)
𝑇𝑇

𝑡𝑡=1

, �̅�𝑚𝑇𝑇 =
1
𝑇𝑇
�𝑚𝑚𝑡𝑡

𝑇𝑇

𝑡𝑡=1

 (3)   



Here 𝛿𝛿  and 𝑚𝑚𝑡𝑡  are the same parameters as specified in 
CUSUM, while 𝑇𝑇 is the current time. The minimum value of 
this variable is computed by: 

𝑀𝑀𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑚𝑚𝑡𝑡,𝑡𝑡 = 1 …𝑇𝑇� (4)   

𝑃𝑃𝐻𝐻𝑇𝑇 = 𝑚𝑚𝑇𝑇 −𝑀𝑀𝑇𝑇 
(5)   

After computing 𝑚𝑚𝑇𝑇  in the range of 1 to 𝑇𝑇 , the minimum 
value 𝑀𝑀𝑇𝑇 of 𝑚𝑚𝑇𝑇 is updated which is then used to compute the 
PH statistics by (5). When the value of 𝑃𝑃𝐻𝐻𝑇𝑇 becomes greater 
than a threshold 𝜆𝜆, it indicates a drift alert. 

3) DDM: This drift detection method employs Binomial 
distribution [9] that gives the general form of the probability 
for the random variable representing the number of errors in 
a sample of 𝑚𝑚 examples.  

𝑠𝑠𝑖𝑖 = �𝑝𝑝𝑖𝑖(1 − 𝑃𝑃𝑖𝑖) i⁄  (6)   

For each point 𝑚𝑚 in the sequence that is being sampled, the 
error rate is the probability of incorrectly classifying 𝑃𝑃𝑖𝑖  with 
standard deviation given by formula (6). Next, store the 
values of 𝑝𝑝𝑖𝑖  and 𝑠𝑠𝑖𝑖 when 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑖𝑖 reaches its minimum value 
during the process, in other words, obtaining 𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚 , 𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚 . 
Finally, the detection follows conditions below: 

a) 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑖𝑖≥𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚+2·𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚 for the warning level. Beyond 
this level, the examples are stored in anticipation of potential 
concept drift. 

b) 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑖𝑖≥𝑝𝑝𝑚𝑚𝑖𝑖𝑚𝑚+3·𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚 for the drift level. Beyond this 
level, the concept drift is supposed to be true. 

4) EDDM: This approach is developed for improving the 
detection in the presence of gradual concept drift [10]. The 
basic idea is to consider the distance between two 
classification errors instead of only the number of errors. We 
can calculate the average distance between two errors 𝑝𝑝𝑡𝑡  and 
its standard deviation 𝑠𝑠𝑡𝑡. What we store are values of 𝑝𝑝𝑡𝑡  and 
𝑠𝑠𝑡𝑡  till 𝑝𝑝𝑡𝑡 + 2 ∗ 𝑠𝑠𝑡𝑡  reaches its maximum value (obtaining 
𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚  and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚). This method is assigned with two thresholds: 

a) (𝑝𝑝𝑡𝑡 + 2 ∗ 𝑠𝑠𝑡𝑡)/(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚+ 2∗ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) <  𝛼𝛼 for the warning 
level. Beyond this level, the examples are stored in advance 
of a possible change of context. 

b) (𝑝𝑝𝑡𝑡 + 2 ∗ 𝑠𝑠𝑡𝑡)/(𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚 + 2 ∗ 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚) <  𝛽𝛽  for the drift 
level. Exceeding this level shows a concept drift occurring.  

5) ADWIN: This detector holds two sub-windows 𝑊𝑊 
with memory to store the average of collecting results. It 
alarms a drift when observing the distinct change of averages 
and corresponding expected values [11]. Let 𝑚𝑚0 and 𝑚𝑚1 be the 
size of  𝑊𝑊0 and 𝑊𝑊1 , respectively, where 𝑊𝑊0 ∗𝑊𝑊1 = 𝑊𝑊. The 
difference in average values �̂�𝜇 of two windows is bounded by 

��̂�𝜇𝑊𝑊0 − �̂�𝜇𝑊𝑊1� ≥ 𝜀𝜀 (7)   

𝜀𝜀 =  �
1

2𝑚𝑚
𝑙𝑙𝑚𝑚

4
𝛿𝛿′
 (8)  

where 𝑚𝑚 is the harmonic mean of 𝑚𝑚0 and 𝑚𝑚1, 𝛿𝛿′ =  𝛿𝛿 / 𝑚𝑚, and 
𝛿𝛿 is the confidence level. Once a drift is detected, the sliding 
window is removed to the end of the window until no notable 
changes are found. 

6) HDDM-A: HDDMA-test and HDDMW-test are a pair 
of detectors proposed simultaneously [13]. HDDMA  
compares the moving averages to detect drift, while 

HDDMW uses weighted moving averages instead. Both 
approaches use Hoeffding’s inequality to set an upper bound 
to the level of difference between the averages.  

III. ROBUSTNESS OF CONCEPT DRIFT DETECTION 
The basic concept drift detection methods introduced 

above assume that a class label for input data can be provided 
immediately after the prediction [3]. Nevertheless, such an 
assumption is unrealistic in some practical problems that need 
to deal with unreliable data streams. Instead of relying on a 
supervised approach that requires complete labels, some 
researchers focus on proposing efficient unsupervised or 
semi-supervised concept drift detectors with sliding window 
mechanisms [14] [15] [16]. According to [17], the existing 
unsupervised drift detection methods are classified into two 
major categories depending on how to construct the detection 
window, namely batch-based method or online-based method. 
Unsupervised learning methods in both categories evolve and 
provide efficient ways to detect concept drifts without relying 
on complete and true labels.  

In contrast to these new approaches, our main question in 
this paper is how robust are the performances of basic drift 
detection methods under unreliable data streams. Due to the 
inclusion of a partially or fully manual labeling process, as 
shown in Figure 1, the data stream may contain incorrect 
labels and missing labels. Nonetheless, we may still want to 
use the basic drift detectors even when their drift detection 
performances degrade due to unreliable data streams. In other 
words, we advocate that the robustness of the drift detectors 
against unreliable data streams is another important property 
of the basic drift detection methods when considering real use 
cases. This aspect is particularly important in IoT application 
scenarios since the data analysis platform may not have 
sufficient resources to process advanced drift detection 
methods. 

In our robustness evaluation, we consider two key 
performance measures of drift detectors as below. 

1) Delay: The detection delay represents the number of 
samples in the data stream from the drift detection point to the 
true drift point. In other words, it is a measure to evaluate  how 
fast a drift detection method can detect the drift point. We 
commonly set a fixed acceptable threshold of samples to 
determine whether the drift is actually occurring or not (i.e., 
decision deadline). The lower delay within the threshold 
indicates a better performance of concept drift.  

2) Precision: Supposing the correct drift point is 
successfully detected within the acceptable interval, we 
regard it as a True Positive (TP). Furthermore, the False 
Positive (FP) rate represents the detection result considering 
incorrect drift point as true, while the worst situation False 
Negative (FN) rate indicates ignoring or missing the true drift 
points. Precision can be calculated by 𝑇𝑇𝑃𝑃/(𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃 + 𝐹𝐹𝐹𝐹).  

These measures are essential to quantify how individual 
drift detectors can detect drifts swiftly and accurately. The 
performance can deteriorate when the reliability of labels 
decreases. If the performance is not significantly deteriorated, 
we can consider the drift detector is robust against unreliable 
data streams. To investigate the robustness of drift detectors, 
in the following section, we synthetically construct data 
streams with error labels and missing labels, and observe how 
the performances are affected by these factors. 



IV. EXPERIMENT EVALUATIONS 
Our experiments are conducted on Tornado [5] framework 

that provides synthetic data streams, classifiers, and drift 
detectors. Naïve Bayes classifier is employed as a base learner 
because it is one of the most efficient and practical classifiers. 
We created error-labeled data and missing-label data for 
Circles data streams. The ratios of unreliable data are chosen 
from 0 to 0.5. For a given ratio, unreliable data streams are 
generated randomly. We generate five groups of these 
unreliable data streams and five original data streams by 
different random seeds for experiments to obtain the average 
detection performance.  

A. Unreliable data stream 
Synthetic data stream Circles are frequently adopted in 

data mining studies. The data stream includes 100,000 
instances with gradual drift. The data contains two attributes 
𝑚𝑚  and 𝑦𝑦  which are uniformly distributed in [0,1]. The 
classification function is given by (𝑚𝑚 − 𝑚𝑚𝑐𝑐)2 + (𝑦𝑦 − 𝑦𝑦𝑐𝑐)2 =
𝛾𝛾𝑐𝑐2  where (𝑚𝑚𝑐𝑐 ,𝑦𝑦𝑐𝑐)  is its center and 𝛾𝛾  is the radius. The 
instances inside the circle are classified as positive (P), while 
the instances outside the circle are classified as negative (N). 
A gradual drift happens when the distribution of input values 
progressively varies, resulting in classification function 
changes.  

In Circles, the actual drift points are desirably determined 
as the location of 25,000, 50,000, 75,000 for gradual drift 
setting. In other words, there are three TP drift points in total. 
The acceptable length (i.e., delay) of concept drift is set to 
5000. TABLE I shows the summary of the original Circles. 

TABLE I.  SUMMARY OF ORIGINAL CIRCLES 

Data 
stream Class Attribute Drift 

points 
Acceptable 

interval 
Drift 
type 

Circles 2 2 
25,000, 
50,000, 
75,000 

5000 gradual 

 

Our incomplete labels version of Circles is applied as 
input data streams. For unreliable Circles, following the ratio 
of error-labeled data (from 0 to 0.5), we exchange the label n 
with p to generate error-labeled data. For unlabeled scenarios, 
following the ratio of missing-label data (from 0 to 0.5), the 
labels are modified to an undefined class. For mixed label 
scenarios, both error-labeled data and missing-label data are 
generated with half of the given ratio. TABLE II summarizes 
the configurations of unreliable data streams. 

TABLE II.  SUMMARY OF UNRELIABLE CIRCLES 

Data stream Label type Ratio Class 
Circles Original 0 2 
Circles Error 0.1-0.5 2 
Circles Missing 0.1-0.5 3 
Circles Mixed 0.1-0.5 3 

 

B. Configuration of detectors 
We use Naïve Bayes as a classifier and employ different 

detectors to detect the drifts in the generated data stream. To 
set the relevant specific parameter values for drift detection, 
we refer to some default parameter values from the literature 
and adjust the values through the preliminary experiments to 
establish the base performance. The parameter values used for 
individual detectors are shown in TABLE III. 

TABLE III.  CONFIGURATION PARAMETERS OF DETECTORS 

Detector Configuration 
CUSUM min instance = 2600, δ = 0.0001, λ = 50 

PH min instance = 2600, δ = 0.0001, λ = 50 
DDM min instance = 1600 

EDDM min instance = 2600, min errors between instances = 35, 
warning level = 0.97, drift level = 0.92 

ADWIN δ = 0.002 
HDDM-A warning confidence = 0.002, drift confidence = 0.001 

 

In the preliminary experiments, the configured detectors 
are tested with the original Circles. The drift point detection 
results are shown in Figure 2. Each rectangle represents the 
entire input data stream, where each data is processed from 
left to right. We set three drift points at 25%, 50%, and 75% 
of the data stream that are represented as the vertical dotted 
lines. The colored dots on each box show the detected drift 
points by individual detectors. As can be seen, for the original 
Circles, all detectors successfully detect three drift points after 
the true drift points with acceptable delays, although ADWIN 
has two additional false alarms.  

 
Fig. 2.   Original circles drift point detection result 

C. Robustness evaluation 
To investigate the robustness of individual detectors 

against unreliable data streams, we observe the changes of 
detection delays and precision. We conduct five experiments 
for each data stream scenario and take the average values of 
the delays and the precisions. The results of the experiments 
are summarized in Figure 3 to Figure 8. For error-labeled data 
stream, Figure 3 and Figure 4 show the changes of the delay 
and the precision, respectively. As the ratio of error-labeled 
data increases, the delay of detectors generally increases. A 
lower delay indicates a swift detection of the concept drift. As 
can be seen in Figure 3, the delay of EDDM increases sharply 
compared to other detectors. When the error label ratio is 
larger than or equal to 0.3,  CUSUM achieves the lowest delay 
among other detectors. On the other hand, the precision of 
detectors declines when the error label ratio becomes higher 
except ADWIN whose precision steadily increases until the 
ratio reaches from 0 to 0.3. The reason could be that the 
average difference of two sub-windows of ADWIN is easier 
to break the threshold in terms of a small range of error label 
rate. What stands out is that the precision of EDDM rapidly 
declines to 0. The precisions of PH and DDM are stable till 
the ratio 0.3, but then dramatically decrease as the ratio 
increases. The precision of CUSUM drops steadily over the 
domain but achieves the best precision among other detectors 
at the error label ratio 0.5. 

Figure 5 and Figure 6 show the delay and precision values 
in missing-labeled data streams, respectively. We observe the 
fluctuating performance of EDDM both in the delay and the 
precision. EDDM detects drift depending on the distance 



between adjacent errors, and thus, the random generation of 
unlabeled data might cause the high variance of such distance. 
Aside from EDDM, the delays of other detectors are gradually 
increasing by the increased ratio of missing-labeled data, 
while the precisions are not significantly changed. In 
particular, CUSUM, PH, DDM, and HDDM-A hold steady 
performances in both delay and precision, while ADWIN 
stays an unsatisfied precision performance in the domain. 

Figure 7 and Figure 8 illustrate the results of mixed label 
data streams. For the results of the delay, the performance of 
EDDM rapidly reaches the maximum acceptable delay 
interval, which is clearly distinct from other detectors. We also 
notice that the delay performance oscillations of CUSUM, PH, 
ADWIN, and HDMM-A are reasonable until the ratio rises to 

0.4. We observe that CUSUM outperforms other detectors in 
the delay when the ratio reaches 0.5. For the results of the 
precision, PH and DDM outperform the other detectors before 
the ratio exceeding 0.5. However, when the ratio reaches 0.5, 
the precisions of all detectors considerably deteriorate except 
CUSUM. As a result, despite a relatively simple scheme 
adopted, CUSUM is considered a preferable concept drift 
detector in terms of robustness against unreliable data streams. 

D. Efficiency 
From the results, we notice that error labels have a 

significant impact both on the delay and the precision, while 
missing labels have a relatively small impact. When the ratio 
of error-labeled data increases, the detection delay prolongs 
while the precision decreases. To consider this joint impact on 

Fig. 3. The delay of drift detections for error-labeled data streams Fig. 4. The precision of drift detections for error-labeled data streams 

Fig. 5. The delay of drift detections for missing-label data streams 

 
Fig. 6. The precision of  drift detections for missing-label data streams 

 

Fig. 7. The delay of drift detections for mixed label data streams 

 
Fig. 8. The precision of drift detections for mixed label data streams 

 



drift detection performance, we compute the efficiency of drift 
detectors by  

𝑒𝑒𝑖𝑖 = 𝑝𝑝𝑖𝑖 ∙ �
𝐷𝐷 − 𝑑𝑑𝑖𝑖
𝐷𝐷

�, (9)   

where 𝑝𝑝𝑖𝑖  and 𝑑𝑑𝑖𝑖 are the precision and the delay of detector 𝑚𝑚, 
respectively, and 𝐷𝐷 is the acceptable length threshold (i.e., is 
equal to 5000 in our experiment). The efficiency values vary 
from 0 to 1, and a higher value corresponds to the higher 
efficiency of drift detection (i.e., more accurate detection with 
shorter delay). For mixed-labeled data set, the computed 
efficiencies are shown in TABLE IV.  

TABLE IV.  EFFICIENCY RESULT  

 CUSUM PH DDM EDDM ADWIN HDDM-A 

Original 0.97 0.92 0.94 0.83 0.45 0.97 
Mixed (0.1) 0.96 0.90 0.92 0.58 0.59 0.85 
Mixed (0.2) 0.70 0.79 0.81 0.27 0.44 0.63 
Mixed (0.3) 0.67 0.83 0.55 0.03 0.87 0.53 
Mixed (0.4) 0.36 0.64 0.30 0.01 0.50 0.22 
Mixed (0.5) 0.17 0.01 0.00 0.00 0.00 0.00 

 

When the ratio of error-labeled and missing-labeled data 
is relatively small (<0.4), CUSUM, PH, and DDM achieve 
comparable efficiency. However, when the ratio exceeds 0.4, 
all the detectors are no more viable for practical use except 
CUSUM. In conclusion, from our experimental observations, 
CUSUM is considered as a relatively robust drift detector 
among the other detectors in terms of detection delay, 
precision, and efficiency. 

V. CONCLUSION  
In this paper, we evaluated the robustness of basic concept 

drift detectors by synthetically generated unreliable data 
streams that can be observed in real IoT data streams. The 
evaluation results show that error-labeled data stream has a 
more significant impact on the performance of detectors than 
missing-label data cases. We also find that CUSUM-based 
drift detection method can achieve relatively stable 
performance compared with other detectors under unreliable 
data streams. In the extreme mixed-label case at the ratio of 
0.5, only CUSUM still can detect the drifts. Moreover, 
CUSUM is light and memoryless, which must be suitable for 
heavy detection tasks in IoT scenarios with limited computing 
memory environments. The findings from the experiments are 
limited to our configurations, and thus they may not be easily 
generalized for other types of data streams. Nevertheless, the 
observations from our experiments have several implications 
to research and practice for IoT applications dealing with 
unreliable data streams with concept drift. Our future work 
will explore different types of data streams for experiments 
and develop a robust concept drift detector that can cope with 
unreliable data streams.  
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