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Analysis of optimal file placement for energy-
efficient file-sharing cloud storage system 
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Abstract— Popular data concentration is a widely accepted storage energy-saving technique which places frequently-accessed 
data on a small subset of hard disks and spins-down other infrequently-accessed disks. Many previous studies use intuitive 
heuristic algorithms for data placement that promote the imbalance in the access frequencies across hard disks. However, the 
relevance and the optimality of such file placements have not been rigorously investigated. In this paper, we formally define the 
energy-saving file placement problem under the capacity and performance constraints as a combinatorial optimization problem 
and show the theory of the optimal file placement where the file access rates in the next period are given. Our analysis based on 
a stochastic process of disk state transitions gives the theoretical support for the common heuristic placement method. To examine 
the effectiveness of the optimal file placement, we experimentally evaluate the energy-efficiency of a test storage system using 
the file access rates generated from the real access traces from Flickr. The experimental results show that the energy consumption 
can be reduced by 31.8% with the optimal file placement compared to the evenly distributed file placement. We also conduct 
simulation experiments to confirm the energy-saving impacts in larger-scale storage systems. 

Index Terms— Models, Optimization, Power management, Storage management. 
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1 INTRODUCTION
NERGY-efficiency of cloud storage systems has been 
explored as an important challenge for service provid-

ers and enterprises owning the storage systems. According 
to the report “Data Age 2025” [1], the amount of world-
wide data generated from devices such as IoT sensors will 
grow from 33 ZB in 2018 to 175 ZB by 2025. A part of those 
data needs to be saved or archived in data storage some-
where. Present cost-effective cloud or enterprise storage 
systems are expected to extend their capacity to store even 
a larger volume of data. With such an increasing demand 
for data storage, the energy cost of storage systems will be 
a measurable and persistent issue for the owners of the 
storage systems. In a data center environment, it was re-
ported that storage systems consumed about 27% of energy, 
which is the second-largest component after servers and 
cooling systems [2]. While solid state drive (SSD) and Non-
volatile memory (NVM) are gaining popularity as energy-
efficient fast storage devices, hard disk drives (HDDs) are 
still dominant storage components used in data centers 
[1][3][4]. Therefore, continuous efforts to improve the en-
ergy efficiency of large-scale HDD-based storage systems 
will be essential in the coming data age. 

Popular data concentration (PDC) [5] has been a widely 
adopted technology for saving the storage energy con-
sumption by consolidating popular data into a subset of 
hard disks so that the other infrequently accessed disks can 
be shifted to lower-power modes. The main idea behind 

PDC is to exploit the skewness of the data or file access fre-
quencies, which are often observed in many application 
domains. For instance, an image file sharing service Flickr, 
about 70% of files have never been accessed after upload 
[6]. File access analysis in Yahoo!’s enterprise Hadoop clus-
ters observed that 60% of data was not accessed in 20 days 
of time window [7]. By laying such infrequently accessed 
data on a subset of hard disks and spinning down the disks, 
the storage energy consumption can be reduced signifi-
cantly. Many studies on storage energy conservation tech-
niques follow the idea of PDC and successfully reduce the 
energy consumptions of hard disk-based storage systems 
[6][7][8][9][10][11][12]. Two essential functions in the im-
plementation of PDC are the prediction of data access fre-
quencies and the data placement method. While the pre-
diction is usually made by analyzing historical workload 
data, the placement method typically relies on a heuristic 
algorithm that places data on disks in order of data access 
frequencies [5][6][8][12]. The heuristic is intuitive, and the 
effectiveness was validated through some simulation stud-
ies [5][6][8]. However, none of these studies provide the 
theoretical background of this heuristic in terms of energy 
conservation. Indeed, to the best of our knowledge, the re-
lation between the data placement with given file access 
frequencies and the standby state probabilities of disks that 
leads to energy conservation has never been theoretically 
investigated. 

In this paper, we address the file placement problem of 
PDC for an energy-efficient hard disk-based storage sys-
tem hosting a cloud file sharing service. The service is used 
to share media contents such as images, photos, and short 
movies that are posted and accessed by users. For a given 
set of files to be stored in a cloud storage system, we for-
mulate the energy-saving file placement problem as a com-
binatorial optimization problem subject to the constraints 
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on the average file access performance and the capacity of 
individual hard disks. Assuming that the arrival of re-
quests to each media file follows an independent Poisson 
process in a given period, the relation between the file 
placement and the standby state probabilities of hard disks 
is formally analyzed. With this formal model, we derive 
two important propositions on energy-saving file replace-
ment strategy and the optimal file placement under the ca-
pacity constraint, respectively. The first proposition tells us 
any file migration from an infrequently access disk to a 
more frequently access disk always reduces the total en-
ergy consumption of the storage system. The rule is generic 
and can be combined with other heuristic-based file place-
ment algorithms. Thus, the rule is useful for designing a 
file placement algorithm for energy-efficient storage sys-
tems. The second proposition gives the proof of the opti-
mal file placement in which files are placed in order of file 
access frequency under the constraint of hard disk capacity 
given by the number of files on disks. The result gives a 
theoretical background of the previously studied heuristic-
based method. It also clarifies that the necessary condition 
where the heuristic method achieves the optimal file place-
ment satisfying the performance constraint. To confirm the 
effectiveness of the optimal file placement on a real storage 
system, we conducted experiments on our testbed system 
consisting of four disks with the real file access frequencies 
obtained from Flickr file access traces [8]. Our experi-
mental results show the optimal file placement can cut 
31.8% of energy overheads steadily compared with the 
baseline file placement in which file accesses are evenly 
distributed across the hard disks. Moreover, we also con-
ducted simulation experiments to analyze the influences of 
the number of files and the disks on the energy-saving by 
the optimal file placement. Our simulation results are con-
sistent with the results from the previous simulation study 
[5] that presented the energy-saving increased with the 
number of hard disks. 

The rest of the paper is organized as follows. In Section 
2, the related work on energy conservation techniques for 
hard disk-based storage systems is reviewed. In Section 3, 
we describe the target cloud storage system, which is sup-
posed to be used for hosting a file-sharing service. In Sec-
tion 4, we formulate the energy-saving file placement 
problem and discuss the tradeoff relation between the file 
access performance and storage energy consumption. In 
Section 5, we derive the two important propositions for the 
optimal file placement problem with their proofs. Section 
6 shows our experimental results, and finally, Section 7 
gives our conclusion and possible future directions. 

2 RELATED WORK 
There has been a rich body of existing studies for energy-
saving techniques for data center or cloud storage systems. 
Earlier studies on these techniques were summarized in a 
survey paper [13] in which storage systems are not limited 
to hard disk-based ones. The following review mainly fo-
cuses on the energy-saving techniques for storage system 
consisting of hard disks. In terms of energy-efficiency of 
data centers, many existing studies focused on server 

resource management techniques [14][15][16][17], where 
workload allocation is the key problem to solve. Our study 
differs from these studies, since energy conservation tech-
niques for hard disks relying on the mechanism of hard 
disks which are not appropriate for servers [18]. 

The common idea for reducing the energy consumption 
in a hard disk-based storage system is to exploit the disk 
idle time to power-off or speed-down the multi-speed 
disks. The approach is also referred to as dynamic power 
management (DPM) [19]. One of the direct methods to in-
crease the disk idle time is to prepare the segregated set of 
disks for infrequently accessed data. MAID [20] is a storage 
design that separates the archival data disks from the cache 
disks to spin-down the data disks when they are in idle 
states [20]. PDC [5] uses data migration across hard disks 
periodically according to the data popularity to consoli-
date the frequently-accessed data. For increasing the disk 
idle time by data replacement, it is essential to estimate the 
data access frequencies to find a desirable data placement. 
Since data access patterns depend on the application work-
loads, many studies attempted to characterize the applica-
tion workloads and used them for energy-efficient data 
management [6][7][8][11][21]. For example, based on the 
workload analysis of Yahoo!’s Hadoop cluster, GreenHDFS 
[7] allocates the disks either hot or cold zone, and replace 
the data according to the age of data. Hasebe et al. [8] used 
file access traces observed in Flickr to derive the individual 
file access frequencies and proposed the file exchange al-
gorithm to skew the disk access frequencies. Some recent 
studies further took into account the correlation of file ac-
cesses to determine the file placement for energy saving 
[36] [37].  In this paper, we consider a cloud-based file shar-
ing service as a target application. However, the proposed 
model and the optimal file placement analysis are gener-
ally applicable to other applications whose file access rates 
are predictable in advance. 

Instead of migrating data, which often imposes addi-
tional costs, other studies proposed techniques that control 
data accesses for the storage system to avoid spinning-up 
cold disks. The techniques combining data replication and 
access diversion are presented in many existing studies 
[9][22][23][24][25][27][28]. For instance, DIV [24] and 
PARAID [9] presented replica placement techniques to 
save energy by maintaining high-availability using RAID 
configuration. SRCMap [25] leveraged a storage virtualiza-
tion method to replicate the frequently accessed data vol-
ume so that data accesses can be diverted to the replicas on 
the active volumes. Narayanan et al. presented write off-
loading [10], which allows write requests on standby disks 
to be temporarily redirected to other persistent storage. 
Since our theoretical study mainly focuses on the PDC 
method, we do not consider the replicated data and diver-
sion of data accesses. However, the impact of data replica-
tion and high-availability constraint can be considered in a 
future extension of our model and analysis. 

Compared with the storage energy-saving techniques, 
the studies on storage power modeling and measurements 
have received less attention [30]. Allalouf et al. presented 
the fine-grained storage model to estimate the power con-
sumption of storage workloads [30]. The model of disk idle 
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time under the parallel video-sharing workloads is pre-
sented by Yuan et al. [31]. The optimization problems to 
minimize the power consumption of a disk-based storage 
system [32][33] and hard disk with SSD storage system [35] 
were formulated using disk power state models. PREFig-
uRE [34] is presented as an analytic framework that uses 
the histogram of disk idle times to determine schedules for 
power saving modes. None of the work, however, did pre-
sent the model that associates the data placement and the 
disk standby state probabilities for estimating storage 
power consumption. Our model, introduced in Section 5, 
is the first to describe this association formally. 

3 CLOUD STORAGE SYSTEM FOR A FILE SHARING 
SERVICE 

In this section, we describe the requirements and the archi-
tecture of a cloud storage system for a file-sharing service.  

3.1 System requirements 
We consider online file-sharing services where any users 
can upload files and share the content with other users. 
The assumed contents are media files such as images, pho-
tos, and short movies. YouTube, TikTok, Instagram, and 
Flickr are well-known popular services providing such a 
file-sharing service. There are a number of content-specific 
or community-oriented file-sharing services as well (e.g., 
Snapchat, 500px, SmugMug, and Vimeo). 

To attract many users for such file-sharing services, the 
service providers need to keep their systems in a good per-
formance. Service response time is one of the key metrics 
which most users perceive when accessing the content. Us-
ers do not continue using the service when they feel impa-
tient in waiting for the responses to their requests. For e-
Commerce sites, it is reported that 40% of users would 
leave the sites if it takes more than two seconds to get the 
response [38]. Service providers need to define a relevant 
service level to meet users’ expectations.  

Besides keeping the service in a good performance, it is 
also an important challenge for service providers to reduce 
the total cost of the system. In a data center or a cloud en-
vironment, the total system cost can broadly be divided 
into capital expenditure (CapEx) and operational expendi-
ture (OpEx)[39]. In terms of a storage system, the initial 
purchase of storage hardware is included in CapEx. The 
available capacity of the storage system should be con-
strained by the initial budget for CapEx. On the other hand, 
the cost of maintaining the storage system appears in OpEx, 
which may include software license fees, power usage 
costs, supplies expenses, and human labor costs. Although 
the energy usage cost cannot be exempted from the OpEx 
as long as continuing the service, it is important to reduce 
the wasted power usage that is not necessary for providing 
the service. Any disks which store infrequently-accessed 
data must be the target of energy-saving. 

3.2 Workload characteristics 
We assume that most accesses to a file-sharing service are 
read accesses, which are randomly requested from service 
users. Once a user uploads a file such as a photo or a movie 

taken by users’ smart device, the file can be deleted later 
but is seldom modified or replaced. Under such usages of 
the service, write accesses to the storage system are limited 
to the time when files are uploaded. Other accesses are 
mostly read accesses aiming to look up the uploaded files 
by different users. The frequency of file accesses depends 
on the popularity of the content. While a few popular files 
are accessed very frequently, a large part of uploaded files 
are seldom or never accessed. According to the previous 
study [6], for randomly selected 20,000 photos in Flickr, 
about 70% of photos are never being accessed after upload. 
Such web access patterns are commonly observed in other 
web services and are often approximated by Zipf distribu-
tions [40][41]. In our experimental study in Section 6, we 
also use the access traces of Flickr investigated in the pre-
vious studies [6][8].  

3.3 Cloud storage architecture 
From the system requirements and workload characteris-
tics of the file-sharing service described above, we consider 
a commonly adopted energy-saving cloud storage archi-
tecture consisted of hard disks that can shift to standby 
mode. Following the existing studies [7][20][42][43], we as-
sume the system consists of active (hot) storage and ar-
chive (cold) storage. Active storage is mainly used for stor-
ing recently uploaded and frequently-accessed files, and 
thus their hard disks are always in active mode. On the 
other hand, archive storage hosts less-frequently accessed 
files so that their hard disks can shift to standby mode for 
energy-saving. Our target is archive storage, whose hard 
disks can be switched between active and standby states 
depending on the file access frequencies. 

For conserving the energy by an efficient file placement 
on archive storage, it is essential to estimate the individual 
file access frequencies. Energy-saving storage architecture 
using PDC often maintains the list of files access frequen-
cies and uses the information to determine the file replace-
ment [5][8][12]. PDC can effectively increase the disk idle 
time in the archive storage if the estimation of file access 
frequencies is accurate. We can reduce the total energy con-
sumption by spinning down the disks that remain in an 
idle state for a specific period. The threshold to determine 
a spin-down for a hard disk is a design parameter of the 
architecture. A short threshold time may cause frequent 
spin-ups that require relatively large power consumptions 
compared to keeping idleness. On the other side, a long 
threshold time to spin-down may reduce the chance of disk 
energy conservation. This tradeoff can be considered 
through the computation of break-even time [42], which 
derives a reasonable threshold time for energy-saving. In 
our study, we assume that the threshold time is given as a 
constant parameter determined by a break-even time anal-
ysis. In this architecture, the key to energy conservation is 
the file placement that is constrained by the performance 
requirements, the disk capacity limits, the current place-
ment, and the file migration costs. Since our goal in this 
paper is to analyze the optimal file placement given the in-
formation of file access frequencies, we do not consider the 
file migration costs that will be addressed in future work. 
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4 PROBLEM FORMULATION 
We formally define the energy-saving file placement prob-
lem for a file-sharing cloud storage system.  

4.1 Definition 
Consider a cloud storage system consisting of a set of hard 
disks 𝑀𝑀 = {1,2, … ,𝑚𝑚} that stores a set of files 𝑁𝑁 = {1,2, …𝑛𝑛}. 
The cloud system hosting a file sharing service may have 
cache servers or dedicated cache storage systems in addi-
tion to the target storage system, but hereafter we focus on 
a hard-disk based nearline storage system which we 
simply refer to cloud storage system. The file placement to 
hard disks can be represented by a mapping function 
𝜙𝜙: 𝑁𝑁 → 𝑀𝑀. File replacement is performed periodically at a 
specific time interval. Given predicted file access rates in 
the next time interval, our goal is to find the optimal file 
placement 𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜 that minimizes the total energy consump-
tion of the system under the performance and the capacity 
constraints. For mathematical tractability, we make the fol-
lowing assumptions to the system. 

A1. In the focused time interval, file accesses occur in a 
Poisson process with a constant arrival rate 𝜆𝜆𝑖𝑖 which 
is proportional to the popularity of file i. 

A2. The expected energy consumptions in active and 
standby state of a hard disk for a unit time are given 
as 𝑃𝑃𝑎𝑎 and 𝑃𝑃𝑠𝑠, respectively, where 𝑃𝑃𝑎𝑎 > 𝑃𝑃𝑠𝑠. 

A3. Average response times for a file in an active and a 
standby disk are given by 𝑇𝑇𝑎𝑎 and 𝑇𝑇𝑠𝑠, where 𝑇𝑇𝑎𝑎 < 𝑇𝑇𝑠𝑠. 

A4. The total average response time for file accesses to the 
cloud storage system should be less than 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, where 
𝑇𝑇𝑎𝑎 < 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟(< 𝑇𝑇𝑠𝑠). 

A5. A disk shifts to a standby mode when a threshold time 
𝜏𝜏 passes after the last file access on the disk, while the 
disk returns to an active mode when file access occurs 
in the standby state. 

A6. The maximum number of files placed on a disk 𝑗𝑗 ∈ 𝑀𝑀 
is constrained by the capacity 𝑐𝑐𝑗𝑗, while the total capac-
ity is enough for hosting all the files ∑ 𝑐𝑐𝑗𝑗𝑗𝑗∈𝑀𝑀 ≥ 𝑛𝑛 , 
where n is the number of files to be placed. 

With the above assumptions and constraints, we define the 
problem as follows. 
Energy-saving file placement problem 
Given a set of files N whose accesses are given by Poisson arrivals, 
and a cloud storage system consisting of a set of disks M whose 
states are changed by file accesses as well as the threshold time 𝜏𝜏 
to change a disk in standby mode, find the optimal file placement 
𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜: 𝑁𝑁 → 𝑀𝑀 that minimize the total energy consumption of the 
system, under the constraints on the required average response 
time 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 and the capacity limit 𝑐𝑐𝑗𝑗 , 𝑗𝑗 ∈ 𝑀𝑀. 

While Poisson arrivals were observed in real systems 
[45][46], the validity of the first assumption A1 on the con-
stant file access rate is arguable, since the popularity of 
sharing files can change over time as observed in real traces 
[8]. The solution to the energy-saving file placement prob-
lem only gives the best placement under the predicted file 
access rates for the next period.  

In constructing the disk capacity constraint in A6, we 

assume that file sizes do not vary much among the files. 
While the assumption of averaged file size is acceptable 
when we deal with a large number of files, there may be a 
correlation between access patters and file sizes. Such cor-
relations may impact on optimal file placement. However, 
in this paper, we do not consider such a case since the pop-
ularity of file content is usually the major factor of file ac-
cess frequencies, especially in online file-sharing services. 

4.2 Response time constraint 
It is noted that there is a tradeoff between the response 
time to file access and disk energy consumption. A long 
standby period of a disk can reduce the expected total en-
ergy consumption, while it has a negative influence on the 
average response time of the file accesses. Due to this 
tradeoff, the minimization of energy consumption is con-
strained by the response time requirement 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟. The con-
straint can be derived from the following tradeoff analysis. 
Let 𝜋𝜋𝑠𝑠

(𝑗𝑗) be the probability of standby state for disk j. The 
expected average response time for disk j with file place-
ment 𝜙𝜙 can be represented as 

𝐸𝐸�𝑇𝑇𝑟𝑟𝑟𝑟𝑠𝑠
(𝑗𝑗)|𝜙𝜙� = 𝑇𝑇𝑎𝑎�1 − 𝜋𝜋𝑠𝑠

(𝑗𝑗)� + 𝑇𝑇𝑠𝑠𝜋𝜋𝑠𝑠
(𝑗𝑗). (1)   

Let 𝑤𝑤(𝑗𝑗) be the probability that the requested file is stored 
in disk j, which satisfies ∑ 𝑤𝑤(𝑗𝑗)

𝑗𝑗 = 1. The expected average 
response time of the cloud storage system is given by 

𝐸𝐸[𝑇𝑇𝑟𝑟𝑟𝑟𝑠𝑠|𝜙𝜙] = �𝑤𝑤(𝑗𝑗)

𝑗𝑗

𝐸𝐸�𝑇𝑇𝑟𝑟𝑟𝑟𝑠𝑠
(𝑗𝑗)|𝜙𝜙�. (2)   

From the response time requirement, 𝐸𝐸[𝑇𝑇𝑟𝑟𝑟𝑟𝑠𝑠|𝜙𝜙] needs to be 
less than or equal to 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟. Therefore, applying (1) to (2) and 
rearranging the terms, we obtain the following constraint 
on the probabilities of standby states for the disks. 

�𝑤𝑤(𝑗𝑗)𝜋𝜋𝑠𝑠
(𝑗𝑗)

𝑗𝑗

≤
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑎𝑎
𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎

. (3)   

The constraint indicates that the individual standby state 
probabilities are bounded from above by 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟. On the other 
hand, given the probabilities of standby state for individ-
ual disks, the expected total energy consumption of the 
cloud storage system can be represented by 

𝐸𝐸[𝑃𝑃|𝜙𝜙] = 𝑚𝑚+𝑃𝑃𝑎𝑎 − (𝑃𝑃𝑎𝑎 − 𝑃𝑃𝑠𝑠)�𝜋𝜋𝑠𝑠
(𝑗𝑗)

𝑗𝑗

. (4)   

where 𝑚𝑚+(≤ 𝑚𝑚) represents the number of disks that host 
at least one file as a result of the file placement 𝜙𝜙. To mini-
mize the expected total energy consumption, the aggre-
gated probability of disk standby states should be maxim-
ized. However, individual standby state probabilities need 
to satisfy the response time constraint (3) for the optimal 
file placement 𝜙𝜙𝑜𝑜𝑜𝑜𝑜𝑜. 

In a practical case, the probability that a request meets 
the minimum response time constraint may be used as a 
performance indicator instead of the average response 
time. Even when the service level is specified by such an 
indicator, the optimal file placement is constrained from 
the tradeoff between the response time and the energy con-
sumption. We derive a constraint for this case in the Ap-
pendix, while we focus on the average response time con-
straint in the following discussion.   
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5 OPTIMAL FILE PLACEMENT ANALYSIS 
To derive the optimal solution to the energy-saving file 
placement problem, first, we analyze the relation between 
the file access rates and the standby state probabilities of 
hard disks. The expected total energy consumption of a 
cloud storage system can be represented by a function of 
the aggregated file access rates determined by a given file 
placement. Next, we present a general file migration rule 
for enhancing the energy conservation of the cloud storage 
system by file placement. Finally, we theoretically discuss 
the optimal file placement that minimizes the expected en-
ergy consumption of the cloud storage system. 

5.1 Disk state analysis 
The steady-state probability of a hard disk in a standby 
state can be derived from given file access rates and a 
threshold time to become a standby mode. Since our focus 
is energy conservation by shifting idle disks to standby 
modes, we simply divide the states of a hard disk into an 
active and a standby state and assume that the state 
changes between these states. A state transition from an ac-
tive state to a standby state occurs when the elapsed time 
from the last disk access exceeds the threshold value 𝜏𝜏. On 
the other hand, a state transition from a standby state to an 
active state occurs when any files on the disk are accessed. 
Since both the state transitions are associated with random 
arrival of file accesses, the times for state transitions are 
stochastically distributed. We denote the random variables 
for the time to a standby state and an active state as 𝑋𝑋𝑎𝑎𝑠𝑠 and 
𝑋𝑋𝑠𝑠𝑎𝑎, respectively, that are assumed to be independent and 
identically distributed. Then the stochastic process can be 
seen as an alternating renewal process [47] whose steady-
state probabilities are given by 

𝜋𝜋𝑎𝑎 =
𝐸𝐸[𝑋𝑋𝑎𝑎𝑠𝑠]

𝐸𝐸[𝑋𝑋𝑎𝑎𝑠𝑠] + 𝐸𝐸[𝑋𝑋𝑠𝑠𝑎𝑎] , 𝜋𝜋𝑠𝑠 = 1 − 𝜋𝜋𝑎𝑎, (5)   

where 𝜋𝜋𝑎𝑎 and 𝜋𝜋𝑠𝑠 represent the steady-state probabilities of 
active and standby states, respectively. 

Let 𝐹𝐹𝑗𝑗  represent the set of files stored in disk j. The file 
accesses on disk j can be characterized by the Poisson pro-
cess with rate 

𝜆𝜆(𝑗𝑗) = �𝜆𝜆𝑖𝑖
𝑖𝑖∈𝐹𝐹𝑗𝑗

. (6)   

Thus, the mean time to disk access for disk j is 1/𝜆𝜆(𝑗𝑗), which 
is independent of the disk state. Since any accesses to a 
standby disk make the disk spin-up, the expected time in a 
standby state is given by 𝐸𝐸[𝑋𝑋𝑠𝑠𝑎𝑎] = 1/𝜆𝜆(𝑗𝑗). Now we assume 
that there are r disk accesses before the state transition 
from an active state to a standby state, the expected state 
transition time can be given by 

𝐸𝐸[𝑋𝑋𝑎𝑎𝑠𝑠] = 𝐸𝐸 �𝑟𝑟 ∙
1
𝜆𝜆(𝑗𝑗) + 𝜏𝜏� = 𝐸𝐸[𝑟𝑟] ∙

1
𝜆𝜆(𝑗𝑗) + 𝜏𝜏. (7)   

Let p be the probability that disk access occurs before the 
threshold value 𝜏𝜏. Since the time to next disk access is ex-
ponentially distributed with rate 𝜆𝜆(𝑗𝑗), p can be expressed as 
1 − 𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏. The probability that the disk accesses occur 𝑟𝑟 −
1  times and r-th disk access does not occur before the 
threshold 𝜏𝜏 follows a modified geometric distribution of 

1 − 𝑝𝑝. Therefore, the expected number of disk accesses be-
fore a state transition to standby is 

𝐸𝐸[𝑟𝑟] =
𝑝𝑝

1 − 𝑝𝑝
=

1 − 𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏

𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏
. (8)   

Applying expression (8) to (7) and (5) the steady-state 
probabilities of a hard disk in an active and a standby state 
are expressed as 

𝜋𝜋𝑎𝑎
(𝑗𝑗) = 1 −

𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏

1 + 𝜆𝜆(𝑗𝑗)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏
 ,𝜋𝜋𝑠𝑠

(𝑗𝑗) =
𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏

1 + 𝜆𝜆(𝑗𝑗)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗)𝜏𝜏
. (9)   

The above steady-state probabilities of disk states play a 
central role in the analysis of optimal file placement since 
the expression clarifies the relation between the aggre-
gated file access rates on the hard disks and the probability 
of disk standby states which leads to energy conservation. 

5.1 File migration rule 
Migrating files among hard disks is a key to save storage 
energy using PDC. While the conventional file migration 
algorithms for PDC implicitly attempts to increase the im-
balance in file access frequencies, the validity of such a 
heuristic has not been theoretically investigated. Based on 
the steady-state probabilities of hard disks derived in the 
previous section, we present a general file migration rule 
for reducing the expected energy consumption of a cloud 
storage system. The formal description of this rule is pro-
vided in the following proposition with proof. 
Proposition 1 
For a pair of disks (𝑗𝑗1, 𝑗𝑗2) satisfying 𝜆𝜆(𝑗𝑗1) ≥ 𝜆𝜆(𝑗𝑗2), any file migra-
tion from disk 𝑗𝑗2 to disk 𝑗𝑗1 always reduces the expected energy 
consumption of a cloud storage system when the steady-state 
probabilities of individual hard-disks are given by (9). 

Proof 
Since the expected energy consumption of the cloud stor-
age system is given by (4), it is enough to show ∑ 𝜋𝜋𝑠𝑠

(𝑗𝑗)
𝑗𝑗∈𝑀𝑀+  

is increased by the file migration. Moreover, since the file 
placement on the other disks are not changed, we can focus 
on disks 𝑗𝑗1 and  𝑗𝑗2, and show 𝜋𝜋𝑠𝑠

(𝑗𝑗1) + 𝜋𝜋𝑠𝑠
(𝑗𝑗2) increases by the 

file migration. Denote 𝜋𝜋𝑠𝑠
(𝑗𝑗1′) and 𝜋𝜋𝑠𝑠

(𝑗𝑗2′)  as the steady-state 
probabilities of standby states for disks 𝑗𝑗1 and  𝑗𝑗2, respec-
tively, after the file migration. The difference between the 
total steady-state probabilities before and after the file mi-
gration is expressed by 

∆𝜋𝜋𝑠𝑠 = 𝜋𝜋𝑠𝑠
(𝑗𝑗1′) + 𝜋𝜋𝑠𝑠

(𝑗𝑗2′) − �𝜋𝜋𝑠𝑠
(𝑗𝑗1) + 𝜋𝜋𝑠𝑠

(𝑗𝑗2)� 

= 𝜋𝜋𝑠𝑠
(𝑗𝑗2′) − 𝜋𝜋𝑠𝑠

(𝑗𝑗2) − �𝜋𝜋𝑠𝑠
(𝑗𝑗1) − 𝜋𝜋𝑠𝑠

(𝑗𝑗1′)�. (10)   

Denote 𝜆𝜆𝑥𝑥 as the access rate of the file to be migrated. Since 
the disk access rate of 𝑗𝑗1 after the file migration is repre-
sented by 𝜆𝜆(𝑗𝑗1′) = 𝜆𝜆(𝑗𝑗1) + 𝜆𝜆𝑥𝑥, from expression (9) we have 

𝜋𝜋𝑠𝑠
(𝑗𝑗1) − 𝜋𝜋𝑠𝑠

(𝑗𝑗1′) 

=
𝑒𝑒−𝜆𝜆(𝑗𝑗1)𝜏𝜏

1 + 𝜆𝜆(𝑗𝑗1)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗1)𝜏𝜏
−

𝑒𝑒−�𝜆𝜆(𝑗𝑗1)+ 𝜆𝜆𝑥𝑥�𝜏𝜏

1 + (𝜆𝜆(𝑗𝑗1) +  𝜆𝜆𝑥𝑥)𝜏𝜏𝑒𝑒−�𝜆𝜆(𝑗𝑗1)+ 𝜆𝜆𝑥𝑥�𝜏𝜏

=
𝑒𝑒−𝜆𝜆(𝑗𝑗1)𝜏𝜏 �1 + 𝜆𝜆𝑥𝑥𝜏𝜏𝑒𝑒−�𝜆𝜆

(𝑗𝑗1)+ 𝜆𝜆𝑥𝑥�𝜏𝜏 − 𝑒𝑒− 𝜆𝜆𝑥𝑥𝜏𝜏�

�1 + 𝜆𝜆(𝑗𝑗1)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗1)𝜏𝜏��1 + (𝜆𝜆(𝑗𝑗1) +  𝜆𝜆𝑥𝑥)𝜏𝜏𝑒𝑒−�𝜆𝜆(𝑗𝑗1)+ 𝜆𝜆𝑥𝑥�𝜏𝜏�
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=
𝑒𝑒−𝜆𝜆(𝑗𝑗1)𝜏𝜏 �1 − 𝑒𝑒−𝜆𝜆𝑥𝑥𝜏𝜏 �1 −  𝜆𝜆𝑥𝑥𝜏𝜏𝑒𝑒−𝜆𝜆

(𝑗𝑗1)𝜏𝜏��

�1 + 𝜆𝜆(𝑗𝑗1)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗1)𝜏𝜏��1 + (𝜆𝜆(𝑗𝑗1) +  𝜆𝜆𝑥𝑥)𝜏𝜏𝑒𝑒−�𝜆𝜆(𝑗𝑗1)+ 𝜆𝜆𝑥𝑥�𝜏𝜏�
 

(11)  

Similarly, the disk access rate of  𝑗𝑗2  after the file migration 
is represented by 𝜆𝜆(𝑗𝑗2′) = 𝜆𝜆(𝑗𝑗2) − 𝜆𝜆𝑥𝑥 .  From expression (9) 
we have 

𝜋𝜋𝑠𝑠
(𝑗𝑗2′) − 𝜋𝜋𝑠𝑠

(𝑗𝑗2) 

=
𝑒𝑒−𝜆𝜆(𝑗𝑗2′)𝜏𝜏

1 + 𝜆𝜆(𝑗𝑗2′)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗2′)𝜏𝜏
−

𝑒𝑒−�𝜆𝜆(𝑗𝑗2′)+𝜆𝜆𝑥𝑥�𝜏𝜏

1 + (𝜆𝜆(𝑗𝑗2′) + ∆𝜆𝜆)𝜏𝜏𝑒𝑒−�𝜆𝜆(𝑗𝑗2′)+𝜆𝜆𝑥𝑥�𝜏𝜏
 

=
𝑒𝑒−𝜆𝜆(𝑗𝑗2′)𝜏𝜏 �1 + 𝜆𝜆𝑥𝑥𝜏𝜏𝑒𝑒−�𝜆𝜆

(𝑗𝑗2′)+𝜆𝜆𝑥𝑥�𝜏𝜏 − 𝑒𝑒−𝜆𝜆𝑥𝑥𝜏𝜏�

�1 + 𝜆𝜆(𝑗𝑗2′)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗2′)𝜏𝜏��1 + (𝜆𝜆(𝑗𝑗2′) + 𝜆𝜆𝑥𝑥)𝜏𝜏𝑒𝑒−�𝜆𝜆(𝑗𝑗2′)+𝜆𝜆𝑥𝑥�𝜏𝜏�
 

=
𝑒𝑒−𝜆𝜆(𝑗𝑗2′)𝜏𝜏 �1 − 𝑒𝑒−𝜆𝜆𝑥𝑥𝜏𝜏 �1 − 𝜆𝜆𝑥𝑥𝜏𝜏𝑒𝑒−𝜆𝜆

(𝑗𝑗2′)𝜏𝜏��

�1 + 𝜆𝜆(𝑗𝑗2′)𝜏𝜏𝑒𝑒−𝜆𝜆(𝑗𝑗2′)𝜏𝜏��1 + (𝜆𝜆(𝑗𝑗2′) + 𝜆𝜆𝑥𝑥)𝜏𝜏𝑒𝑒−�𝜆𝜆(𝑗𝑗2′)+𝜆𝜆𝑥𝑥�𝜏𝜏�
 

(12)   

Note that the expression 0 and (12) are the same function 
defined by 

𝑓𝑓(𝑧𝑧) =
𝑒𝑒−𝑧𝑧𝜏𝜏�1 − 𝑒𝑒−𝜆𝜆𝑥𝑥𝜏𝜏(1 − 𝜆𝜆𝑥𝑥𝜏𝜏𝑒𝑒−𝑧𝑧𝜏𝜏)�

(1 + 𝑧𝑧𝜏𝜏𝑒𝑒−𝑧𝑧𝜏𝜏)(1 + (𝑧𝑧 + 𝜆𝜆𝑥𝑥)𝜏𝜏𝑒𝑒−(𝑧𝑧+𝜆𝜆𝑥𝑥)𝜏𝜏),  

𝑧𝑧 > 0, 𝜏𝜏 > 0. 

(13)   

Taking the derivative of 𝑓𝑓(𝑧𝑧) and manipulating the expres-
sions, we can show 𝑑𝑑𝑓𝑓(𝑧𝑧) 𝑑𝑑𝑧𝑧⁄ < 0  in 𝑧𝑧 > 0, 𝜏𝜏 > 0 . Since 
𝑓𝑓(𝑧𝑧)  is a monotonically decreasing function and 𝜆𝜆(𝑗𝑗1) >
𝜆𝜆(𝑗𝑗2′) , we have 𝑓𝑓(𝜆𝜆(𝑗𝑗1)) < 𝑓𝑓(𝜆𝜆(𝑗𝑗2′)) . From expression (10), 
∆𝜋𝜋𝑠𝑠 = 𝑓𝑓�𝜆𝜆�𝑗𝑗2′�� − 𝑓𝑓�𝜆𝜆(𝑗𝑗1)� > 0. Therefore, the total expected 
energy consumption after the file migration is larger than 
the expected energy consumption before the migration.  ∎ 

This file migration rule provides a very powerful 
guideline for designing a heuristic file migration algorithm 
aiming at energy-saving. Indeed, previous studies on PDC 
approach use this rule without a thorough discussion on 
this point [5][6][8][12].  Our proposition first gives theoret-
ical support for this rule of thumb. 

The file migration rule can be extended to the file ex-
change rule between two hard disks that can reduce the ex-
pected energy consumption of a cloud storage system in the 
following corollary. 
Corollary 1 
For a pair of disks (𝑗𝑗1, 𝑗𝑗2) satisfying 𝜆𝜆(𝑗𝑗1) > 𝜆𝜆(𝑗𝑗2), when we ex-
change the file 𝑥𝑥1 on disk 𝑗𝑗1 with the file 𝑥𝑥2 on disk 𝑗𝑗2 satisfying 
𝜆𝜆𝑥𝑥1 < 𝜆𝜆𝑥𝑥2, the expected energy consumption of a cloud storage 
system always decreases when the steady-state probabilities of in-
dividual hard-disks are given by (9). 

Proof 
Since only disk  𝑗𝑗1 and disk  𝑗𝑗2 are affected by the file ex-
change, it is enough to show  𝜋𝜋𝑠𝑠

(𝑗𝑗1) + 𝜋𝜋𝑠𝑠
(𝑗𝑗2) increases after 

the file exchange. When we denote 𝜋𝜋𝑠𝑠
(𝑗𝑗1′)and 𝜋𝜋𝑠𝑠

(𝑗𝑗2′)  as the 
steady-state probabilities of standby states for disk 𝑗𝑗1 and 
disk  𝑗𝑗2, respectively, after the file exchange, the difference 
between the total steady-state probabilities before and af-
ter the file exchange is expressed by (10). Using the nota-
tion ∆𝜆𝜆 = 𝜆𝜆𝑥𝑥2 − 𝜆𝜆𝑥𝑥1 > 0 , we have 𝜆𝜆(𝑗𝑗1′) = 𝜆𝜆(𝑗𝑗1) + ∆𝜆𝜆  and 
𝜆𝜆(𝑗𝑗2′) = 𝜆𝜆(𝑗𝑗2) − ∆𝜆𝜆. Replacing 𝜆𝜆𝑥𝑥 in the proof of proposition 
1 with ∆𝜆𝜆, we can derive the same function (13) and reach 
the same conclusion ∆𝜋𝜋𝑠𝑠 > 0. Therefore, the total expected 
energy consumption after the file exchange is larger than 

the expected energy consumption before the file exchange.
  ∎ 

The rule ensures that any file exchange enlarging the 
difference of disk access rates between two disks can re-
duce the total expected energy consumption. The rule is 
applicable to any file pairs that satisfy the condition on the 
file access rates (i.e., 𝜆𝜆(𝑗𝑗1) > 𝜆𝜆(𝑗𝑗2) and 𝜆𝜆𝑥𝑥1 < 𝜆𝜆𝑥𝑥2). The file ex-
change rule is used in the proof of optimal file placement 
discussed in the next section. 

5.2 Optimal file placement 
To derive the optimal solution to the energy-saving file 
placement problem, the constraints of hard disk capacity 
and performance requirements need to be taken into ac-
count. First, we incorporate the hard disk capacity con-
straint and show the file placement that minimizes the to-
tal energy consumption without considering the perfor-
mance requirement given in (3). Assume that the disks in 
M are sorted in descending order of the capacity, i.e., 𝑐𝑐1 ≥
𝑐𝑐2 … ≥ 𝑐𝑐𝑚𝑚. We present the following proposition for the file 
placement which minimizes the total energy consumption 
of the cloud storage system. 
Proposition 2 
Let 𝜉𝜉:𝑁𝑁 → ℕ be the function to return the rank of file i by de-
scending order of the access rate 𝜆𝜆𝑖𝑖. The file placement function 
𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 defined below minimizes the total energy consumption of a 
cloud storage system. 

𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑖𝑖) = �

1, 𝜉𝜉(𝑖𝑖) ≤ 𝑐𝑐1

𝑗𝑗, 1 < 𝑗𝑗 ≤ 𝑚𝑚, �𝑐𝑐𝑘𝑘

𝑗𝑗−1

𝑘𝑘=1

< 𝜉𝜉(𝑖𝑖) ≤�𝑐𝑐𝑘𝑘

𝑗𝑗

𝑘𝑘=1

.
 

To give a proof of proposition 2, we first clarify the prop-
erty of the placement 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 as in the following lemma. 
Lemma 1 
In the file placement given by 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 , there is no file pair 
(𝑥𝑥1, 𝑥𝑥2),𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥1) ≠ 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥2) that can reduce the expected 
energy consumption by exchanging 𝑥𝑥1  with 𝑥𝑥2  under 
proposition 1. 

Proof of lemma 1 
Since the access rate of disk j is given by 𝜆𝜆(𝑗𝑗) = ∑ 𝜆𝜆𝑖𝑖𝜙𝜙𝑚𝑚𝑚𝑚𝑚𝑚(𝑖𝑖)=𝑗𝑗 , 
by the definition of 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚, for any pairs of disks (𝑗𝑗1, 𝑗𝑗2), 𝑗𝑗1 <
𝑗𝑗2, the access rate of each disk satisfies 𝜆𝜆(𝑗𝑗1) ≥ 𝜆𝜆(𝑗𝑗2). On the 
other hand, for any pairs of files (𝑥𝑥1, 𝑥𝑥2)  satisfying 
𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥1) < 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥2) , the file access rates must hold the 
condition 𝜆𝜆𝑥𝑥1 ≥ 𝜆𝜆𝑥𝑥2 because the files are sorted in descending 
order. As a result, under the file placement 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚, there does 
not exist a file pair (𝑥𝑥1, 𝑥𝑥2) that satisfies both the conditions 
𝜆𝜆𝑥𝑥1 < 𝜆𝜆𝑥𝑥2  with 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥1) < 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥2).  ∎ 

Lemma 1 shows that the expected energy consumption of 
the cloud storage system with the file placement 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 can-
not be reduced by applying corollary 1. This is used in the 
following proof of proposition 2 by contradiction. 
Proof of proposition 2 
Assume that there exists a file placement 𝜙𝜙′(≠ 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚) that 
satisfies E[𝑃𝑃| 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚] > E[𝑃𝑃|𝜙𝜙′]. When we sort the disks un-
der the file placement 𝜙𝜙′ in descending order of the disk 
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access rate, 𝜙𝜙′  becomes equivalent to 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚  if 𝜙𝜙′(𝑥𝑥1) <
𝜙𝜙′(𝑥𝑥2) holds for any file pair (𝑥𝑥1, 𝑥𝑥2) on different disks sat-
isfying 𝜆𝜆𝑥𝑥1 > 𝜆𝜆𝑥𝑥2. Since 𝜙𝜙′ ≠ 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚  by the assumption, there 
is at least a pair (𝑥𝑥1, 𝑥𝑥2) satisfies 𝜙𝜙′(𝑥𝑥1) > 𝜙𝜙′(𝑥𝑥2) and 𝜆𝜆𝑥𝑥1 >
𝜆𝜆𝑥𝑥2. However, in this case, the expected energy consump-
tion can be reduced by exchanging the files 𝑥𝑥1 and 𝑥𝑥2 from 
corollary 1. This contradicts the assumption.  ∎ 

As proved above, the file placement 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 gives the file 
placement which minimizes the total energy consumption 
where the capacity constraint is given by the number of 
files for individual disks (i.e., 𝑐𝑐𝑗𝑗 , 𝑗𝑗 ∈ 𝑀𝑀). In practice, the ca-
pacity constraints are determined by several factors such 
as I/O bandwidth, hard disk capacity in bytes, and standby 
threshold time. When we consider these factors, proposi-
tion 2 does not guarantee the optimality, and hence we may 
need to rely on approximate solutions for such cases. 
Meanwhile, the file replacement rule in proposition 1 is 
generally applicable as long as file exchange is allowed un-
der the capacity constraints. 

Similarly, file placement 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 cannot be the optimal so-
lution to the energy-saving file placement problem when it 
does not satisfy the performance requirement. As dis-
cussed in Section 4.2, for the given response time require-
ment 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟, the probabilities of standby states for disks in 
the cloud storage system need to satisfy the constraint (3). 
Since the access rate of disk j is 𝜆𝜆(𝑗𝑗), the probability that the 
requested file is stored in disk j is given by 

𝑤𝑤(𝑗𝑗) =
𝜆𝜆(𝑗𝑗)

∑ 𝜆𝜆(𝑗𝑗)
𝑗𝑗

=
𝜆𝜆(𝑗𝑗)

Λ
. (14)   

where we denote Λ = ∑ 𝜆𝜆𝑖𝑖𝑖𝑖∈𝑁𝑁 . Applying (14) to (3), we ob-
tain the following corollary to show the necessary condi-
tion where 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 gives the optimal solution.  
Corollary 2 
The file placement function 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 defined in proposition 2 gives 
a solution to the energy-saving file placement problem, if and 
only if the expected disk standby state probabilities satisfy  

�𝜆𝜆(𝑗𝑗)𝜋𝜋𝑠𝑠
(𝑗𝑗)

𝑗𝑗

≤
𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑇𝑇𝑎𝑎
𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎

Λ. (15)   

If the condition (15) is not satisfied, 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚 is not the op-
timal solution due to the violation of the performance re-
quirement 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟  while it theoretically minimizes the total 
energy consumption. It is not a trivial issue to derive a gen-
eral solution for this case theoretically. However, in prac-
tice, there are many alternative solutions one can consider. 
One of the easiest solutions is to relax some system con-
straints such as the capacity of the hot storage to accommo-
date more files on active disks. One can also resort to a non-
linear optimization technique or to develop a heuristic 
method to find the optimal or near-optimal solutions so as 
not to violate the constraint (15). Although finding a feasi-
ble solution for such a case is not the main scope of this 
paper, we present how likely the violation of performance 
requirements can happen in our simulation experiments. 

6 EXPERIMENTS 
In this section, we evaluate the effectiveness of the optimal 

file placement for energy conservation of a cloud storage 
system through real experiments and simulation studies. 
First, we conducted workload tests for a testbed storage 
system with a given set of files and measured the energy 
consumptions by using different file placements. The ex-
perimental results show that the energy consumption of 
the storage system can be saved by the optimal file place-
ment. To analyze the impact of file placement in larger-
scale storage systems, next, we conducted simulation ex-
periments in which the expected energy consumptions by 
the optimal file placement are evaluated. The impacts of 
the uncertainty of estimated file access rates are also stud-
ied. Finally, we examine the expected average response 
time given by the optimal file placement. 

6.1 Experimental system setup 
The purpose of the experimental study is to validate the 
energy conservation effect by different file placements to 
the storage system. While many previous studies related 
to PDC evaluated the energy consumption by fully simu-
lation-based [5][6][7][8][11] or indirect measurement [12], 
we evaluate the total power consumption of the test stor-
age system directly by a dedicated device Watt Checker. 
The device taps the power supply to storage nodes at the 
power outlets and measures the real power usages. The 
measured data is stored in the device and can be retrieved 
through Bluetooth connection. The target storage system 
consists of four storage nodes, each of which has a 500GB 
of hard disk for file storage. All the storage nodes are con-
nected to the same local area network through which re-
mote file accesses arrive from a client node. We control the 
states of hard disks by hdparm. To determine the threshold 
time 𝜏𝜏, we conducted a preliminary experiment that traces 
the power consumption during the state change from 
standby to active. From the measured power consump-
tions, we derive the break-even time as 15 seconds and use 
this value for the following experiments. 

 
Figure 1. The number of Flickr files against the file access rates 

We used Flickr access logs collected in the study [8] to 
generate the test workloads for file accesses. Specifically, 
three days of access logs on July 14 – 16, 2012, for 47,835 
image files are sampled for creating an empirical distribu-
tion of file access frequencies. In Figure 1, the number of 
files that have the same range of file access rate (i.e., the 
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number of file accesses per hour in three days) is plotted. 
The plot exhibits how the file accesses are concentrated on 
a few very popular files, and also shows the majority of 
files are less frequently accessed. Indeed, about half of the 
files (23,480 files) are not accessed in this period, although 
they do not appear in the double logarithmic plot. 

 
Figure 2. The relation between the file rank of access frequency 

and the number of actual file accesses 

For the same data set, Figure 2 plots the relation be-
tween the file rank in descending order of access frequency 
and the number of actual file accesses during the period. 
The curve may be roughly approximated by Zipf distribu-
tion which is represented by a dotted line. In the experi-
ments, we assume that the individual file access frequen-
cies follow this empirical distribution and used four copies 
of the same dataset resulting in 191,340 files in total. The 
capacity of a hard disk is set to 47,835 files so that all the 
disks need to host an equal number of files. The size of each 
file is assumed to be 2.65MB, as it was the average file size 
observed in the Flickr trace [8]. Based on the individual file 
access frequencies, file access requests are generated on the 
client node and sent to the corresponding hard disk follow-
ing to the given file placement. The file read is simply done 
by cat command via ssh. 

6.2 Energy conservation by file placement 
We evaluate the energy consumptions of the storage sys-
tem under the same workload with different file place-
ments. Besides the optimal file placement 𝜙𝜙𝑚𝑚𝑖𝑖𝑚𝑚  given in 
Section 5, balanced placement and bisection placement are 
used as the baseline methods. In the balanced placement, 
the files are distributed across the hard disks such that the 
workloads are equally balanced. With our test dataset, we 
simply place one copy of the original file set for each disk. 
Since there are no differences in file access rates among 
hard disks, the balanced placement is antithetical to the op-
timal file placement. The bisection placement is in between 
the balanced and the optimal placement but is a frequently 
used method that segregates active/hot disks from ar-
chive/cold disks [7][20][42][43]. In our testbed system, we 
reserve two disks for hot storage on which most frequently 
access files are stored and assign the other two disks for 
cold storage. The files in the hot or cold storage are distrib-
uted across hard disks such that the workloads are 

balanced in the individual category (hot or cold). Note that 
the number of files stored in each disk is equal to 47,835 
regardless of the file placements. TABLE I summarizes the 
individual disk access rates in accesses per second that are 
the aggregated file access rates by the different file place-
ments. 

TABLE I. DISK ACCESS RATES BY DIFFERENT FILE PLACEMENTS 
 (ACCESSES PER SECOND) 

 
balanced bisection optimal 

node 1 1.597546 3.191717 6.079602 
node 2 1.597546 3.191717 0.303831 
node 3 1.597546 0.003376 0.006752 
node 4 1.597546 0.003376 0 

 
Using this file access rates for different file placements, we 
measured the ten hours of power usages of the storage sys-
tem. The actual power overheads against the power con-
sumption of the idle storage system are plotted in Figure 3. 
As can be seen, there is a clear distinction between power 
overheads among different file placements. Since we use 
constant file access rates during the experiments, the 
power overheads are increasing monotonically. The opti-
mal file placement can cut 31.8% of energy overheads 
steadily compared with the balanced file placement. Com-
pared to the bisection placement, the optimal file place-
ment can reduce 13.3% of energy overheads. The measured 
energy is not solely due to hard disks but also contains 
other factors such as CPU power. We emphasize that the 
experiments are conducted under the same amount of 
workload, and hence the difference of energy overheads 
purely comes from the file placements. 

 
Figure 3. The observed power overheads against the power con-

sumption of the idle storage system 

6.3 Simulation experiments 
To evaluate the effectiveness of the optimal file placement 
in larger-scale systems, we conduct simulation experi-
ments using the energy model derived in Section 4. As-
suming that the file access rates follow the empirical distri-
bution used in the previous experiment, we synthetically 
generate n samples ranging from 104  to 108  to compose 
the population of files. The number of disks is fixed to a 
hundred by adjusting the disk capacity to n /100. For the 
bisection placement, fifty disks are used for hot storage, 
while the remained fifty disks are assigned for cold storage. 
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The expected energy consumptions by an active hard disk 
and a standby hard disk are set to 33.47 W and 19.38 W, 
respectively, from the observed average values. By varying 
n, the expected total energy consumptions of the storage 
system are computed for three file placement methods. For 
each value of n, simulations are conducted ten times, and 
then the mean values of the expected energies are plotted 
in Figure 4. 

 
Figure 4. Expected energy consumptions vs. the number of files 

The optimal file placement consistently achieves the 
lowest energy consumptions in the whole range of n. The 
difference between the energy consumptions by the bal-
anced placement and those by the bisection placement is 
increasing with the number of files until around 𝑛𝑛 = 105. 
When 𝑛𝑛 > 106, by the balanced placement, all the disks are 
almost always active states, and hence the values of ex-
pected energy reach its upper limit. The expected energy 
consumption by the optimal file placement does not in-
crease much in the range 𝑛𝑛 > 5 × 106. The phenomenon is 
caused by the given distribution of file access rates where 
49% of files are never accessed even in larger n. The opti-
mal file placement can consolidate these cold files into the 
cold disks and spin-down the cold disks. It is also noted 
that the bisection placement does not have such property, 
because the files are distributed evenly in the cold set of 
disks. 

 
Figure 5. Expected energy consumptions vs. the number of disks 

Next, we fix the number of files to 5 × 105 and vary the 
number of disks from 20 to 200. Note that the capacity of 
hard disks is changed from 2.5 × 104 to 2.5 × 103 accord-
ing to the number of disks. The mean values of expected 

energy consumptions by three file placement methods are 
plotted in Figure 5. For all the file placement methods, we 
observed that the expected energy consumptions are pro-
portional to the number of disks. As the scale of the storage 
system increases, the amount of energy-saving by the op-
timal file placement also increases. While the simulation 
settings are different, the results are generally consistent 
with the previous simulation study that showed the en-
ergy-saving by PDC becomes more significant when in-
creasing the number of hard disks [5]. 

In all of the above experiments, we assumed that the 
exact file access rates are known before determining the file 
placement. However, in practice, such a perfect estimation 
of file access rate is not possible, and hence the effective-
ness of the optimal file placement significantly depends on 
the accuracy of the estimation. To evaluate the conse-
quence of the inaccuracy of file access rates estimations, we 
conducted another simulation experiment. In this experi-
ment, we compute the optimal file placement by using in-
accurate file access rates generated by adding Gaussian 
noise to the exact file access rates. We fix the number of 
files to 5 × 105 and set the number of disks to a hundred. 
By varying the variance of the Gaussian noise in {0, 0.001, 
0.01, 0.1}, the expected energy consumptions of the cloud 
storage system with the optimal file placement are evalu-
ated. Figure 6 plots the accumulated energy consumption 
over a hundred iterations. For comparative purposes, the 
accumulated energy consumption by the balanced place-
ment without the Gaussian noise is also presented. 

 
Figure 6. Impacts of the uncertainty of file access rates 

The results clearly show that the increased uncertainty (i.e., 
larger 𝛿𝛿) of file access rates significantly impact on the ex-
pected energy consumption by the optimal file placement. 
Even with a smaller variance noise like the case of 𝛿𝛿 =
0.001, the expected energy consumption is far from the op-
timal case relying on the perfect estimation of the file ac-
cess rates. In our test data set, about half of the files in the 
test data set have never accessed. Accurate predictions of 
these file accesses are crucial for energy-saving because the 
effectiveness of the optimal file placement is sensitive to 
the variance of the access rates of cold files. 

6.4 Response time evaluation 
The optimal file placement that minimizes the total energy 
consumption of the cloud storage system may be unac-
ceptable due to the constraint from the average response 
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time requirement (15). Since we assume 𝑇𝑇𝑎𝑎 < 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑇𝑇𝑠𝑠, the 
possibility of constraint violation depends on how fre-
quently file requests require the access to standby disks 
and how long such requests need to wait for disk spin-up. 
To examine this, we computed the expected average re-
sponse time for the storage system simulated in the previ-
ous scalability experiments. To compute the average re-
sponse time, we set 𝑇𝑇𝑎𝑎 = 20 and vary the values of 𝑇𝑇𝑠𝑠  in 
{4000, 6000, 8000} milliseconds in reference to [8]. Same as 
the previous simulation, we vary the number of files n, 
while the number of disks is fixed to a hundred by adjust-
ing the disk capacity to n /100. The expected average re-
sponse times are plotted in Figure 7, where we observe that 
the response time decreases as the number of files in-
creases. 

 
Figure 7. Expected average response times for the storage system 

with optimal file placement 

As can be seen, the average response time is largely influ-
enced by 𝑇𝑇𝑠𝑠 especially when the scale of the system is not 
too large. However, in a practical range of system scale 
(𝑛𝑛 ≥ 106), the average response time is less than a few hun-
dred milliseconds that seems to an acceptable level in 
terms of the response time requirement 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟. 

In the above response time model, we do not take into 
account the throughput capacity of individual disks. Since 
the optimal file placement attempts to aggregate the ac-
cesses to a specific disk, the contention of disk accesses due 
to the aggregated file accesses may not be negligible. The 
expected response time drastically gets worse when the 
disk access rate by the Poisson process exceeds a certain 
threshold [48]. In order to avoid the performance penalty 
caused by the contention, it is essential to set disk capacity 
constraints 𝑐𝑐𝑗𝑗  in consideration of the expected file access 
rate. The problem is a part of the capacity planning issue 
for storage systems, which has been studied in the litera-
ture [49][50]. Although we do not discuss the capacity 
planning problem further in this paper, we can avoid such 
contention by taking a conservative strategy for capacity 
planning. It means that we can decide disk capacity con-
straints 𝑐𝑐𝑗𝑗  for the worst-case scenario (i.e., all highly-fre-
quently accessed files are stored in a single disk). For in-
stance, we also used such a conservative policy in our ex-
periments for the optimal file placement shown in TABLE 
I. In this experimental setting, we limit the disk capacity to 

47,835 without considering its efficiency. While the con-
servative policy is not capacity-efficient, we can avoid an 
extreme performance penalty due to the concentration of 
accesses. 

7 CONCLUSION AND FUTURE WORK 
In this paper, we presented a theory of the optimal data 
placement for an energy-saving cloud storage system for 
file sharing service. We model the disk state transitions by 
an alternative renewal process and derive the steady-state 
probabilities of standby states of hard disks under the 
given disk access rates. The model can associate the indi-
vidual file access rates and file placement with the ex-
pected energy consumption of hard disks in the storage 
system. With this model, we formulate the energy-saving 
file placement problem in which the placement is con-
strained by the performance requirements and the hard 
disk capacity. Our theoretical analysis of the optimal solu-
tion to the problem derives the two propositions. The first 
proposition gives a general rule for file migration over the 
hard disks that reduce the total energy consumption of the 
storage system. Since the rule does not make any assump-
tions on hard disk capacity and performance requirements, 
it is applicable in general for designing heuristic algo-
rithms for data replacement. The second proposition 
shows that the file placement by order of file access rates 
can minimize the expected total energy consumption. We 
clarify the necessary condition where the file placement 
minimizing the energy consumption is the optimal place-
ment under the requirement for the average response time. 
Although the heuristic approach has been used in the pre-
vious literature, we first give a theoretically proof of the 
optimality of the heuristic placement method. We further 
evaluated the effectiveness of the optimal file placement by 
the experiments on a testbed system and the simulation 
studies. 

Our results have several limitations due to the assump-
tions introduced for mathematical tractability that needs to 
be relaxed to some extent in future work. The future exten-
sions of our study can be discussed in the following direc-
tions. 
 Incorporating varying file access rates 

In this paper, we only consider the optimal file placement 
assuming that the file access rates are steady at least in 
the next period. However, in real systems, the frequen-
cies of file accesses are varying over time due to the 
changing popularity of the content [6][8]. Extending our 
theory to a more dynamic problem setting is one of the 
important future research directions. 
 Developing efficient file replacement algorithms 

When trying to keep the file placement as close as opti-
mal by file migration across hard disks, we cannot ne-
glect the migration cost. While some existing studies ad-
dressed the migration cost in the file placement strategy 
[6][32][33], a theoretical analysis of the optimal file mi-
gration or exchange strategy under the migration cost 
constraints can be considered in the future. 
 Extending the models for high-available storage systems 

Our analysis of optimal file placement did not consider 
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the redundancy of data placement like by a RAID config-
uration. Following several existing studies [9][22][23][24], 
our formal model can be extended to analyze the tradeoff 
relation among energy-efficiency, performance, and data 
availability. 
 Analyzing the energy-efficiency of hybrid storage sys-

tems 
Recent advanced storage systems often employ a tiering 
configuration that manages a hierarchy of heterogeneous 
storage devices such as NVRAM, Flash, and SSD 
[48][49][50], and places the data in consideration with 
data types and their access patterns. Modeling and anal-
ysis of power consumption of such mixed storage archi-
tectures can be important future research issues as well. 
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