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ABSTRACT
Real-time object detection systems are rapidly adopted in many
edge computing systems for IoT applications. Since the compu-
tational resources on edge devices are often limited, continuous
real-time object detection may suffer from the degradation of per-
formance and reliability due to software aging. To provide a reliable
IoT applications, it is crucial to understand how software aging can
manifest in object detection systems under resource-constrained
environment. In this paper, we investigate the software aging issue
in a real-time object detection system using YOLOv5 running on
a Raspberry Pi-based edge server. By performing statistical anal-
ysis on the measurement data, we detected a suspicious trend of
software aging in the memory usage, which is induced by real-time
object detection workloads. We also observe that a system moni-
toring process is halted due to the shortage of free storage space as
a result of YOLOv5’s resource dissipation. The monitoring process
fails after 24.11, 44.56, and 115.36 hours (on average), when we
set the sizes of input images to 160px, 320px, and 640px, respec-
tively, in our system. Our experimental results can be used to plan
countermeasures such as software rejuvenation and task offloading.
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1 INTRODUCTION
Object detection is becoming an essential task in many application
domains such as autonomous vehicle, video surveillance, anomaly
detection, and robot visions [34, 36]. In IoT application systems,
object detection functions are often deployed on edge devices con-
sidering the real-time performance and data privacy [18]. This
integration is particularly important for applications requiring real-
time performance, such as detection of individuals with suspicious
objects in a crowd, prevention of road accidents, and equipment
malfunction avoidance. The outcome of object detection systems
significantly impacts on our lives and society, and hence object
detection function needs to be reliable even running on resource-
constrained edge devices.

As object detection functions in IoT applications typically re-
quires continuous operation on edge server, the software aging
issue comes to be a reliability concern. Software aging is known
as a phenomenon that induces performance degradation and an
eventual system failure after a long-running operation due to aging-
related software bugs [14]. Common causes of software aging in-
clude memory leaks, memory fragmentation, and accumulated nu-
merical errors that are often not easily detected and removed com-
pletely in the development phase [11]. Researches on software
aging are broadly divided into two categories; model-based study
and measurement-based study [9]. In the model-based approach,
analytical models (such as stochastic reward nets (SRN) [3] and
continuous-time Markov chains (CTMC) [33]) are used to capture
system degradation behavior. In the measurement-based approach,
which is the approach adopted in this work, system attributes (e.g.,
memory consumption) are periodically collected to infer signs of
software aging [22].

Considering the influences of object detection systems on real-
world applications, it is important to quantitatively assess the im-
pacts of software aging on these environments. Previous research
has evaluated the impact of software aging on web servers [10],
operating systems [8], and cloud computing environments [24].
Software aging issues have also been reported to occur when image
processing is performed in an edge computing environment [2].
A recent study reports that object detection algorithms can suffer
from software aging in different libraries, implementations, and
datasets [23]. However, to the best of our knowledge, there is no
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existing work investigating software aging issues in a real-time
object detection system running on an edge server with scarce
computing resources.

In this paper, we experimentally evaluate the software aging
phenomena in a real time object detection system continuously
running on edge computing environments. The edge computing
environment consists of twomain components: a Real-Time Stream-
ing Protocol (RTSP) server and a processing node. The RTSP server
is responsible for sending the videos captured by the connected
camera to other processing nodes using RTSP distribution. The
processing nodes receive the RTSP video and perform real-time
object detection using YOLOv5 [17]. YOLO (You Only Look Once)
is the most popular object detection method based on deep learning
with high speed and accuracy, and it is also used for real-time object
detection [5, 17, 25–27]. In our experiment, YOLOv5 [17] was used
as the object detection method. More specifically, YOLOv5s.pt is
used as the trained model for object detection, as it is the lightest
and fastest available. To investigate the phenomenon of software
aging, we conducted long-running experiments to collect data dur-
ing continuous operation of a real-time object detection system
using YOLOv5 for 10 days on edge servers under different workload
configurations. By using Mann-Kendall test [20] with Sen’s slope
estimator [29], we confirmed decreasing trends in the free memory
and increasing trends in the swap usage under the workload with
a larger image size. Besides the aging trend analysis, we observe
the ‘side-impact’ of software aging that may cause another process
running on the same server to fail. YOLOv5 is configured by default
to save images after inferences (i.e., object detection), and hence the
storage space is used up when the process runs continuously for
long time. While the YOLOv5 process can survive even encounter-
ing excessive storage usage, other processes are affected by lack of
storage space. In our testbed, a monitoring process that periodically
appends log entries is halted due to this side-impact. We consider
such a side-impact event as a failure event and measure the time to
failure data under different workload conditions. The results reveal
that failures occur on average after 24 hours, when the image size
is 160px.

The contributions of the paper are summarized as below:

• We detect suspicious software aging trends in memory and
swap usage on edge servers running a YOLOv5 process.

• We show that the software aging in YOLOv5 is highly likely
caused by the image saving option that continuously save
the images after inference.

• We identify an adverse side-impact of software aging that
causes a system monitoring process to fail. We present the
time-to-failure data of themonitoring process under different
workload configurations.

The rest of the paper is organized as follows. Section 2 presents
basic concepts. Section 3 describes the related work. Section 4 ex-
plains the experimental plan. Section 5 presents the results with
some statistical analysis. Finally, Section 6 presents our conclusion
and future works.

2 BACKGROUND
2.1 Object detection
Object detection is one category of image processing tasks that in-
volves identifying and locating objects (e.g.: humans, animals, cars,
or buildings) in an image or video. Object detection algorithms help
systems to accurately and precisely identify and locate objects, just
like humans. Object detection can be divided into two categories:
two-stage detection and one-stage detection [16]. Two-stage detec-
tion is more accurate, but requires long time for image processing.
On the other hand, one-stage detection is time-efficient and can
detect objects in real time [16]. There are many one-stage detec-
tion algorithms such as YOLO, RetinaNet and Single Shot Multibox
(SSD). Among others, YOLO is the most popular one-stage object
detection method based on deep learning with high speed and high
accuracy. Therefore YOLO is extensively used for real-time object
detection tasks [5, 17, 25–27] in various domains such as automated
driving [28] and drone systems [30].

2.2 Software aging
The software aging is the phenomenon causing performance degra-
dation and an eventual system failure after a long-running opera-
tion due to aging-related software bugs [14]. There are two potential
causes of the aging phenomena [31]. First, the accumulation of er-
rors due to activation of aging related bugs within the running
system (e.g.: like memory leaks or round-off errors) that can lead to
performance degradation or even unplanned outages. Second, the
activation and/or propagation of system errors that can influence
the total system uptime, such as the incident with the Patriot missile
defense system [12]. Fundamental concepts of software aging are
also found in [11, 31].

Aging effects are the result of the accumulation of errors, which
can be detected through aging indicators. Aging indicators refer to
system variables that can be measured directly and can be related
to software aging phenomena. Examples of aging indicators are ser-
vice response times, memory consumption and swap usages. Aging
indicators can be used to determine the existence of the software
aging phenomenon. There are three approaches to estimating this
phenomenon: the threshold-based approach, the statistical-based
approach, and the machine learning-based approach [22]. In the
threshold-based approach, a threshold is determined so that actions
are taken when the aging indicator exceeds the pre-determined
threshold value. In the statistical-based approach, statistical tech-
niques are used to analyzed the data collected to assess the presence
of aging phenomena. In the machine learning-based approach, time
series approaches are used to predict when the system is most likely
to fail due to the aging effects.

3 RELATEDWORK
Software rejuvenation [14] and software life-extension [19] have
been known as effective countermeasures for software aging. In
order to apply such countermeasures effectively, it is imperative
to understand how software aging manifest in a specific execution
environment. Statistical techniques, which is the approach adopted
in this work, are commonly applied for characterizing software
aging from system measurement data [22]. The Mann-kendall test
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[20] and the Sen’s slope estimator [29] are often used to analyze the
trend in the time series of aging indicator. Some alternatives have
been proposed for trend detection and estimation (e.g., a modified
version of the Cox-Stuart test for trend detection followed by the
iterative Hodrick-Prescott Filter for (linear and non-linear) trend
estimation [35], or a metric based on Multidimensional Multi-scale
Entropy (MMSE) for trend analysis and aging-related failure predic-
tion [7], but the Mann-Kendall test plus Sen’s estimator procedure
remains largely the most adopted one, mainly because of its sim-
plicity and widespread use in numerous research fields. In contrast
to many experimental studies on software aging that analyze the
trends in the measurement data [1, 8, 10, 24], our work also attempts
to collect the time-to-failure data caused by software aging, since
it is also important to model and predict the aging behavior.

We also target a context little investigated so far in the software
aging literature, namely object detection algorithms. YOLO-based
system [5, 17, 25–27], which can perform object detection from
real-time video stream, have been used in various situations such
as edge computing [13]. However, because of the limited computa-
tional resources of edge computing environments, real-time object
detection programs like YOLO potentially confront software ag-
ing phenomena. Therefore, this paper investigates software aging
phenomenon in real-time object detection using YOLOv5 through
experiments on our edge computing testbed.

Researchers in the Computer Vision area have analyzed several
Deep Neural Networks (DNNs), including algorithms for object
detection, from a performance perspective [4, 6], even on Raspberry
Pi devices [32], and on mobile robotics [21]. These studies consider
metrics that are also of interest for software aging, including power
consumption, inference time, and memory. However, none of them
is focused on software aging, namely what happens to performance
and resource consumption metrics in the long running, which is
the main goal of this work.

4 EXPERIMENTAL PLAN
The objective of our study is to analyze software aging issues in a
real-time object detection system using YOLOv5 implemented on
an edge server. As the edge server has limited resources that may
not cope with heavy workloads, our goal is to collect aging-related
statistics such as aging indicators and time-to-failure data to find
suspicious aging trends and their consequences. We set up our
own experimental platform consisting of edge servers executing
YOLOv5 for objective detection in response to the video stream
transmitted from a streaming server. We apply a measurement-
based strategy using different workloads to characterize software
aging phenomena. The experiment details are explained below.

4.1 Setup
Webuilt a system that acquires images from an edge server equipped
with a camera and performs object detection processing on the ac-
quired images. The system are implemented on Raspberry Pi 4
model B that is connected with a 1000BASE-T local area network.
We use the Raspberry Pi 4 model B with 1.5GHz quad core ARMv8
CPU, 4GB RAM, and 64bit Raspberry Pi OS. The system consists
of two types of nodes: an RTSP server node that acquires a video
using a camera and distributes the video, and a processing node

Figure 1: Real-time object detection in a video stream

that receives the video via RTSP and performs object detection
using YOLOv5. The camera was used to capture a screen showing
a video of a cityscape, and object detection was performed on the
captured video. Figure 1 shows a screenshot of object detection in
the captured video. To detect objects such as cars and people, we
installed the pre-trained file "yolov5s.pt", which is a publicly avail-
able trained file for YOLOv5. Additionally, we used 12 Raspberry Pi
servers; one is for an RTSP server and 11 are for processing nodes
running in parallel. Each processing node executes independently
and does not have any interactions except the RTSP server.

4.2 Experimental procedure
4.2.1 Aging trend analysis. The first experiments are conducted
to analyze the aging trend in system metrics during continuous
real-time object detection by YOLOv5 for 10 days. We choose free
memory usage and swap usage as the aging indicators to be inves-
tigated, since they are common metrics for resource consumption
[8, 10, 22, 24]. These metrics are collected using sysstat and smem
at 10-minute intervals. We consider workload impacts by defining
different input image sizes that can be controlled with YOLOv5’s
"–img size" option. In the experiment, we use four categories of
workload: no workload, 160px, 320px, and 640px.

For trend analysis in the measurement data, we use the Python
module pyMannkendall [15] to compute theMann-Kendall statistics
and to obtain the Sen’s slope estimates. The Mann-Kendall analysis
tests the null hypothesis (H0) that there is no trend in the time series
data, while the alternative hypothesis (H1) indicates an upward or a
downward trend in the data. If the p-value of the test is lower than
the significance level (𝑝 = 0.05), then there is statistically significant
evidence that a trend is present in the time series data. The Sen’s
slope estimator assesses the magnitude of the trend. It is computed
as the median of all pairwise slopes between each pair of points in
the data set so that a positive Sen’s slope implies a positive trend,
while a negative Sen’s slope means a negative trend.

YOLOv5 runs with the image saving mode by default, in which
image data is saved to local storage after each object detection. This
save mode can be disabled by setting "True" to the option "–nosave",
which enforces the process to save only at the final checkpoint.
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4.2.2 Time to failure analysis. The second experiment is conducted
to collect the time to failure values by running YOLOv5 with the
image savingmode.Whenwe run YOLOv5with image savingmode,
images are saved after every object detection, resulting in a shortage
of storage space on the edge server that has only 32GB of SD card.
Interestingly, YOLOv5 can continue operation even encountering
the shortage of storage space. However, it has side-impacts on
other running processes requiring write access to the storage. In
our experimental system, the systemmonitoring process is forced to
stop due to this side-impact.We consider this phenomenon as a type
of failure caused by software aging because the resource depletion
event is caused by software aging in another process under high
workload. We measure the time to failure data in different workload
settings in terms of input data image size (i.e., 160px, 320px, and
640px). As the processing time of each image must depend on the
image size, we also measure the image processing times in different
workload settings.

5 RESULTS AND ANALYSIS
5.1 Aging trend analysis
5.1.1 Image saving mode. For real-time object detection system
using YOLOv5 with image saving mode, we observed symptoms
of software aging in both free memory and memory swap usages.
Figure 2 plots the amounts of free memory under different work-
load settings, and Figure 3 plots the free memory in no workload
condition. In each figure, the x-axis represents the elapsed time
and the y-axis represents the amount of free memory. In Figure 2,
for the workloads with 160px and 320px image sizes, the amount
of free memory gradually increases after the steep decrease at the
beginning. On the other hand, for the workload with 640px image
size, the amount of free memory decreases gradually even after
the steep decrease at the beginning. The difference implies that
the workload with 640px is more memory-intensive than the other
workload scenarios. The free memory in no workload case exhibits
a decreasing trend of free memory, as shown in Figure 3. However,
the amount of free memory is one order of magnitude larger than
in other cases where real-time object detection is running.

To confirm the trend in the observed free memory, we conducted
the statistical analysis mentioned in Section 4.2.1. Besides, to com-
pare the significance of trends, we applied Sen’s slope estimator.
Table 1 shows the results of the Mann-Kendall test and Sen’s slope
estimator. For the Mann-Kendall test, most p-values are less than
0.05. This means that the null hypothesis of the Mann-Kendall test
is rejected. For the workload with 640px image size, both the Mann-
Kendall test and Sen’s slope estimator confirm the decreasing trend
in the amount of free memory. It should be noted that this phe-
nomenon can be more severe than the slope estimate appears to be.
In fact, the trend is not linear and after a few hours the available
memory is close to zero.

As memory usage dynamics are closely related to swap usage,
we also looked at swap usage trends. Figure 4 plots the memory
swap usages of some representative workload cases. The x-axis
represents the elapsed time and the y-axis represents the memory
swap usage. As it can be seen, swap usages increase sharply after
200 hours in both results with workloads with an image size of
640px. The results clearly show that memory tends to deplete on
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Figure 2: Trends of free memory with different image sizes
under the image saving mode
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Figure 3: Trend of free memory in no workload scenario

these workloads. On the other hand, for the workloads with 160px
and 320px image sizes, the swap usage is less than 5% over the
experimental period.

Table 2 shows the results of the Mann-Kendall test and Sen’s
slope estimator. The Mann-Kendall test and Sen’s slope estimator
results also confirm increasing trends in all the cases except the no
workload case. Some of the results show increasing trends, but with
a slope of 0, meaning that the trend exists but is not significant.
The results suggest that software aging is likely to occur in real-
time object detection systems using YOLOv5 when the system runs
for long periods of time. In particular, under the 640px image size
setting, all the test results show positive slope estimates in swap
usage. Note that for this case the system operates for a long time
on low memory and after about 200 hours it starts using swap
massively.
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Table 1: MKT and slope estimates for free memory under the
image saving mode

MKT Sen’s estimator
Workload p-value Trend Slope [kb/10mins]
None 0.0 decreasing −283.882
160px(1) 0.0 increasing 49.364
160px(2) 0.0 increasing 38.465
320px(1) 0.0 increasing 56.205
320px(2) 0.0 increasing 61.489
320px(3) 0.0 increasing 73.667
320px(4) 0.0 increasing 59.241
640px(1) 0.077 no trend −1.091
640px(2) 0.0 decreasing −2.290
640px(3) 0.0 decreasing −2.692
640px(4) 0.0 decreasing −3.996
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Figure 4: Trends of swap usages with different image sizes
under the image saving mode

To examine the root causes of the increase in swap usage, we
conducted additional experiment to collect per process memory
information and performed a process analysis to identify the pro-
cesses that are using the most memory and swap on the edge server.
We use smem to collect the memory and swap usage information
per process at 10 minute intervals. Table 3 shows the 10 processes
that consume the most swap. The most swap-consuming process is
"fcitx-d" which is a lightweight input method framework provid-
ing language support independent of the Linux environment. The
process is not directly involved in object detection.

Figure 5 shows the swap usage for the top five processes pre-
sented in Table 3. We can observe that the swap usages of these
processes increase significantly after 80 hours. When the operating
system starts swapping, the choice of the process whose pages are
swapped out depends on several factors considered by the page
replacement algorithm, but in general the most inactive pages are
those gradually moved into the swap space. Thus, the least used
processes during the experiment (e.g.: “fcitx-d”) are probably the

Table 2: MKT and slope estimates for swap usage under the
image saving mode

MKT Sen’s estimator
Workload p-value Trend Slope [kb/10mins]
None 1.0 no trend 0.0
160px(1) 0.0 increasing 0.0
160px(2) 0.0 increasing 0.0
320px(1) 0.0 increasing 0.0
320px(2) 0.0 increasing 0.0
320px(3) 0.0 increasing 60.41364
320px(4) 0.0 increasing 167.92944
640px(1) 0.0 increasing 483.30912
640px(2) 0.0 increasing 429.03924
640px(3) 0.0 increasing 337.9068
640px(4) 0.0 increasing 269.30148
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Figure 5: Trends of swap usages for the top 5 processes

ones to be swapped out. It should be noted that this experiment
focuses on analyzing the root causes of software aging presented
earlier and are conducted separately from the first set of experi-
ments. Therefore, the start of swap consumption does not coincide
with the results shown in Figure 4.

We also investigated the memory usage per process. We found
that "detect.py" was the most memory-consuming process, which is
themain process of YOLOv5. Thememory usage trend of "detect.py"
is plotted in Figure 6. The memory usage gradually decreases be-
tween 80 and 100 hours. Since this interval corresponds to the same
range at which swap usage increases, this event implies YOLOv5
causes swap to be consumed.

5.1.2 No image saving mode. We conducted the same experiments
on YOLOv5 with no image saving mode. Figure 7 plots the amount
of free memory under different workload settings. The x-axis repre-
sents the elapsed time and the y-axis represents the amount of free
memory. Unlike Figure 2, the y-axis takes values between 1500mb
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Table 3: The top 10 processes consuming high swap usages

Process Swap usage [kb] Description
fcitx-d 13940 Linux environment-independent input method framework
pulseaudio–daemon 4600 A general purpose sound server intended to act as middleware
python3/usr/share 3216 Contains architecture-independent data of Python3
pcmanfm–desktop–profile 2352 The standard file manager for Lightweight X11 Desktop Environment (LXDE)
lxpanel–profileLXDE-pi 2288 The task bar file manager for LXDE
-bash 1244 Default shell for Linux
pipewire 1156 A multimedia framework that handles audio and video on Linux
pipewire-media-session 1056 A simple session manager for PipeWire framework
systemd–user 1028 User instance
mozc/mozc_server 668 Japanese input method editor used by fcitx
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Figure 6: Trends of memory usage for the top 5 processes

and 1800mb. The amount of free memory is decreasing for all work-
loads, but unlike the image saving mode, the decrease is smooth
and to the same extent as the no workload case of the saving-mode
experiment.

Table 4 shows the results of the Mann-Kendall test and Sen’s
slope estimator. The results also confirm a decrease in the amount
of free memory under all image sizes. For swap, we did not observe
swap usage under all workload conditions, thus we omit to show
the plots. Therefore, memory-related software aging trend is small
in the no image saving mode. These results suggest that the free
memory reduction and memory swap caused by YOLOv5 is highly
likely caused by the default image saving option.

5.2 Time to failure analysis
As explained in Section 4.2.2, a system monitoring process is halted
when we run YOLOv5 with image saving mode. The failure is
caused by the shortage of storage space. In this experiments, we
collected the time-to-failure data under different workload settings.
The obtained results are shown in Table 5. The results show that
the monitoring process fails faster when YOLOv5 runs with the
smaller image size. Failures were observed between approximately
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Figure 7: Trends of free memory with different image sizes
under no image saving mode

Table 4: MKT and slope estimates for free memory under no
image saving mode

MKT Sen’s estimator
Workload p-value Trend Slope [kb/10mins]
160px(1) 0.0 decreasing −146.425
160px(2) 0.0 decreasing −127.952
160px(3) 0.0 decreasing −127.952
320px(1) 0.0 decreasing −106.653
320px(2) 0.0 decreasing −83.461
320px(3) 0.0 decreasing −92.863
320px(4) 0.0 decreasing −87.980
640px(1) 0.0 decreasing −79.172
640px(2) 0.0 decreasing −72.496
640px(3) 0.0 decreasing −72.496
640px(4) 0.0 decreasing −90.047

22.5 and 26.5 hours for 160px images, which are about half of the
case with 320px and a quarter of the case with 640px. The results
reveal that the time to failure is highly related to the image size.
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Table 5: Time-to-failures observed in different image sizes

Workload Time-to-failure [hour] Average
160px(1) 22.49574
160px(2) 23.22652
160px(3) 26.59628 24.10618
320px(1) 43.35192
320px(2) 45.59534
320px(3) 44.86154
320px(4) 44.25723 44.55833
640px(1) 120.2252
640px(2) 101.0385
640px(3) 102.3448
640px(4) 137.8333 115.36045

The more severe aging side-impact for the 160px case than for
the 320px and 640px cases (unlike the previous experiment) can be
explained by considering that the main contribution to memory
consumption is likely more related to processing. That is, with
smaller images, YOLOv5 can process more images in the same time
unit, and this impacts more on memory consumption. To corrobo-
rate this hypothesis, we also measured the processing time of each
image under different workload settings. The average processing
times per an image are 0.294, 0.716, and 2.207 seconds, respectively,
for input image sizes of 160px, 320px, and 640px. The larger the
image size to be inferred, the more time it takes to detect objects
per image, and the longer it takes to put pressure on storage. The
processing time per image is faster in 160px case, which increases
the number of images to be stored and puts pressure on storage.

We also conducted the Mann-Kendall test and Sen’s slope esti-
mator to investigate the effect of aging on processing time. Table
6 shows a slight trend toward a decrease in processing time in
most cases. That is, the results showed no negative effects of soft-
ware aging on processing time. We also computed throughput per
workloads at 10 minute intervals and conduct data trend analysis.
The throughput per workload are 1566.519, 744.622, and 257.386
[images/10mins], when we set the sizes of the input images to
160px, 320px, and 640px, respectively. Likewise the processing time,
throughput in the 160px case is the highest. Table 7 shows that the
only case of a decreasing trend in the throughput is the 160px(3)
case. As this is the only decreasing case, we present more details
about it. Figure 8 shows the throughput over time for this case.
The results show that throughput significantly decreased around 8
hours. However, after 14 hours, the throughput increases signifi-
cantly, followed by a gradual decreasing trend, which is potentially
caused by software aging. After that, the process is halted around
26 hours, as presented in Table 5.

6 CONCLUSION
In this study, we observed experimentally suspicious software aging
trends in edge computing environments for real time object detec-
tion using YOLOv5. The decrease in the amount of free memory,
and the increase in the memory swap usage are observed when we
set image size to 640px in the image saving mode. However, we did
not observe such trend in the no image saving mode. This suggests

Table 6: MKT and slope estimates for the processing time

MKT Sen’s estimator
Workload p-value Trend Slope [secs/10images]
160px(1) 0.795 no trend 0.0
160px(2) 0.001 decreasing −1.289𝑒−7
160px(3) 0.135 no trend −7.867𝑒−8
320px(1) 0.0 decreasing −5.303𝑒−7
320px(2) 0.648 no trend 0.0
320px(3) 0.0 decreasing −3.863𝑒−6
320px(4) 3.775𝑒−15 decreasing −1.216𝑒−6
640px(1) 0.0 decreasing −3.933𝑒−5
640px(2) 0.0 decreasing −3.814𝑒−6
640px(3) 0.0 decreasing −3.557𝑒−6
640px(4) 0.0 decreasing −5.846𝑒−5

Table 7: MKT and slope estimates for the throughput

MKT Sen’s estimator
Workload p-value Trend Slope [images/10mins]
160px(1) 0.281 no trend 0.12174
160px(2) 0.988 no trend 0.0
160px(3) 0.0458 decreasing −0.15152
320px(1) 6.666𝑒−06 increasing 0.089917
320px(2) 0.825 no trend 0.0
320px(3) 0.002 increasing 0.09615
320px(4) 0.37 no trend 0.02109
640px(1) 0.492 no trend 0.00396
640px(2) 0.0004 increasing 0.0084
640px(3) 0.465 no trend 0.0
640px(4) 5.354𝑒−10 increasing 0.07971
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Figure 8: The observed decreasing trend of throughput

that conventional software aging problems are likely to occur, es-
pecially under the workload with 640px in the image saving mode.
We also identified software aging in storage space when YOLOv5



SAC’23, March 27 –March 31, 2023, Tallinn, Estonia K. Watanabe et al.

runs with the image saving mode. Although the shortage of storage
space did not impact the operation of YOLOv5, it did impact other
system process that was halted when data could not be written
to storage. Consequently, we collected the time-to-failure of the
monitoring process after starting YOLOv5. The results showed that
the failures occur in a shorter time for the smallest input image
sizes. This may be due to the fact that the low size image is pro-
cessed faster than larger size images, which increases the amount
of images to be stored. In conclusion, real-time object detection
with YOLOv5 in an edge computing environment is likely subject
to software aging problems, although the degree varies depending
on the workload. To be confirmed, however, additional experiments
are required. As with most of the software aging literature, our tests
are run under a fixed workload in order to accelerate the aging pro-
cess. Still, the aging behavior under a variable workload intensity
should be investigated.

In the future, we plan to work along three directions: i) conduct-
ing similar experiments with different object detection algorithms
and different versions of YOLO to see if the same phenomenon
occurs, ii) exploiting measurement data to setup a model-based
analysis, where we can model the consumption of the involved
resources and explore alternative architectural solutions, and iii)
considering proactive countermeasures such as periodic restart for
clearing aging states (i.e., software rejuvenation) or offloading tasks
to other computation nodes to perform software life-extension [33].
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