
Reliability and Performance Evaluation
of Two-input Machine Learning Systems

Kazuya Wakigami
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

wakigami.kazuya@sd.cs.tsukuba.ac.jp

Fumio Machida
Department of Computer Science

University of Tsukuba
Tsukuba, Japan

machida@cs.tsukuba.ac.jp

Tuan Phung-Duc
Department of Policy and Planning Sciences

University of Tsukuba
Tsukuba, Japan

tuan@sk.tsukuba.ac.jp

Abstract—The multiple-input machine learning system (MLS)
is a system architecture exploiting data diversity to improve
the output reliability of the system by comparing prediction
results on multiple input data. While the output reliability is
enhanced by redundancy, the architecture imposes additional
costs and non-negligible processing overheads. The performance
of multiple-input MLSs has been theoretically investigated in the
previous study using queueing analysis. However, it is little known
how real MLSs are impacted by the multiple predictions and
comparison processes needed in the architecture. In this paper,
we implement two-input MLSs in two different configurations,
a parallel type architecture and a shared type architecture, and
evaluate the reliability, performance, and energy consumption of
the system by experiments. Our empirical results unveil several
advantages of the shared type architecture that can suppress the
increases in response time and energy consumption by using a
shared machine learning module for predictions of two inputs.
We also compare the results of the performance simulation of
two-input MLS with the empirical results. While we confirm the
effectiveness of the simulation, we also find some gaps in the
real observations. For example, we observe that the inference
time distribution fits well in the log-normal distribution rather
than the exponential distribution assumed in the simulation. Our
findings could be useful for developing performance models for
multiple-input MLSs.

Index Terms—Energy consumption, Machine learning system,
Performance, Reliability, Simulation

I. INTRODUCTION

In recent years, systems and services using machine learning
(ML) models have been widely used. Applications of MLs are
expanding in the fields requiring safety and high reliability,
such as medical image diagnosis and autonomous vehicles.
In such application fields, prediction errors may cause serious
problems, and hence, improving the reliability of MLSs is left
as a fundamental challenge. In terms of the reliability of MLSs,
existing studies focus on improving the robustness of ML mod-
els by generating adversarial samples that induce prediction
errors [1], and verifying the safety of neural networks subject
to adversarial examples [2]. These studies mainly consider the
performance and robustness of a single ML model rather than
an MLS. Meanwhile, the output reliability of MLSs can also
be enhanced by introducing multiple ML models.

A redundancy architecture known as the N-version MLS can
improve the system output reliability by diversifying predic-
tion results from ML modules [3]. By using multiple models

and/or inputs, the output of the system can be more reliable
than relying on inference by a single ML module. Since it
is necessary to execute multiple inferences and compare the
results, it is concerned that response time and throughput
performance can decrease in real systems. The performance
of two-input MLSs has been theoretically investigated in the
previous study using queueing analysis [4]. However, the ex-
isting studies have not verified the performance characteristics
of two-input MLSs with real MLSs. Since queueing analysis
is based on theoretical assumptions, such as exponentially
distributed service time and the Poisson job arrival, it is
essential to validate the model’s assumptions with real data.

In this paper, we implement two-input MLSs and empiri-
cally investigate the performance characteristics of real MLSs
using diversified inputs. We consider image classification as
an ML task and measure the response time from data input
to the final output, the amount of processing per unit time
(throughput), and the mean energy consumption of the system
during the experiments. We conduct the same experiments for
two types of two-input MLSs, which are the parallel type
architecture and the shared type architecture. For the input data
distribution, the Poisson distribution and the constant interval
inputs are considered. Our performance experiment results
show that performance characteristics of empirical results are
generally similar to the results obtained by the queueing model
analysis. However, we also find some gaps between the empir-
ical and theoretical results. For example, the inference time of
the ML model fits well with the log-normal distribution instead
of the exponential distribution assumed in the queueing model.
In addition to the performance measurement experiment, we
tuned the simulation programs developed in the other study [5]
to adapt our experimental configuration to simulate the MLS
performance and compare the simulation with the empirical
results. As a result, we observe that the response time of
the empirical results is shorter than the simulation result in
the parallel type architecture, while it is longer than the
simulation results in the shared type architecture. There are
several reasons for the difference, but in common, the shared
type architecture MLS has a shorter average response time
than the parallel type.

We make the following contributions in this paper.



• The performance characteristics of two-input MLSs are
empirically investigated. The parallel and shared type ar-
chitectures are compared in terms of reliability, through-
put, response time, and energy consumption.

• We show that the observed performance characteristics
of two-input MLSs are generally similar to the theoret-
ical results based on queueing analysis. However, our
experimental results reveal that the ML inference time
distribution better fits the log-normal distribution rather
than the exponential one.

• By comparing the simulation results with the empirical
results, we demonstrate the usefulness of the performance
simulation for analyzing the performance of MLSs.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we describe the
two-input MLSs and introduce the parallel type architecture
and shared type architecture. Section IV explains the experi-
mental system. Section V presents the details of the experiment
procedure. Section VI describes experimental results. Section
VII compares simulation results with empirical results. Finally,
Section VIII gives our conclusion.

II. RELATED WORK

Regarding the performance of multiple-input MLSs, theoret-
ical studies have been conducted using queueing models. The
throughput of the parallel and the shared type architectures has
been evaluated by modeling with queueing theory [4]. When
the service rate is sufficiently high, it is shown that the parallel
type architecture has higher throughput than the shared type
architecture. A similar evaluation using a simulation program
was presented in [5]. The simulation results showed that the
shared type architecture had advantages in response time and
energy consumption. While these theoretical studies rely solely
on numerical analysis or simulation, the performance charac-
teristics of a real MLS have not been empirically investigated.
There is also a study regarding the modeling of MLS aiming
to optimize services on serverless platforms using a Bayesian
optimizer [8]. In this study, the model leverages Markovian
Arrival Processes (MAPs), while the service time is assumed
to follow the exponential distribution.

Recently, some empirical studies of multi-input MLSs use
real datasets to evaluate the system output reliability. The re-
liability of a 3-version image classification model architecture
was investigated in [6]. The impact of data diversification
using image transformations was studied in [7]. The study
presented the Neuron Coverage Improvement Rate (NCIR) to
explore efficient combinations of diversified data that improve
the system’s reliability. However, these empirical studies did
not consider the performance overhead imposed by multiple
predictions and their comparisons.

Energy efficiency is another important performance aspect
of MLSs. In the previous study [9], the latency and energy
consumption of the object detection model are evaluated.
In addition, a method has been proposed to reduce energy
consumption by enhancing the post-processing of data dur-
ing object detection [10]. Another study focused on image

classification tasks and comprehensively analyzed and con-
sidered accuracy, inference time, and energy consumption
[11]. However, these works did not consider the reliability of
MLS outputs, which is associated with MLS architectures. In
this paper, we implement two-input MLSs with the parallel
type and shared type architectures using small computers
and compare their performance empirically by throughput,
response time, and energy consumption to argue their trade-
offs.

III. TWO-INPUT MLSS

In this section, we explain two-input MLSs with parallel
and shared type architectures for performance evaluation. Both
types of MLSs use two input data and compare different infer-
ence results from the two data. For example, we perform image
classification on images taken by two different cameras and
compare the results. These two input images are not identical
but similar. Therefore, the inference results are expected to be
the same. If the inference results are not matched, the system
can find that at least one of the results is wrong, and hence, an
incorrect system output can be suppressed. In a real MLS, an
input data stream is generated by a camera or a sensor. In our
experiments, a module that generates the data for inference
is called an Input module. The Input module generates two
versions of input data to introduce the data diversity, which
are called version 1 input and version 2 inputs, respectively.
Although these two versions of input data are not identical,
both data represent the same target. The version 1 and version
2 input are generated independently and sent to modules for
ML predictions. A module that deploys an ML model for
inference on the input data is called a Prediction module. The
Parallel type architecture MLS uses two Prediction modules
in parallel, while the shared type architecture MLS uses one
Prediction module.

As shown in Fig. 1, in the parallel type architecture in
Fig. 1(a), version 1 and version 2 input are sent to different
Prediction modules, whereas in the shared type architecture
in Fig. 1(b), two input data are sent to the same Prediction
module. All the inference results are sent to the Comparison
module that decides the final output of the system. The
Comparison module compares the corresponding inference
results for version 1 and version 2 input. If the results are
matched (i.e., predicted labels are identical), the Comparison
module outputs the results as the final output. Otherwise,
the module discards the results. In the experiment, we use
an image classification task in which an inference result is
considered correct if the result matches the label of the original
image.

The performance of these architectures can be characterized
by some system parameters. Table. I shows the parameters
of two-input MLSs. Assume the job arrival rate of version 1
and version 2 input is λ1 and λ2 respectively, and the service
rate of the Prediction module for version 1 and version 2
input is µ1 and µ2, respectively. Let µ be the service rate
of the Comparison module. Let K be the maximum buffer
size of the Prediction modules. These parameters are also



(a) Parallel type architecture

(b) Shared type architecture

Fig. 1. Architectures of two-input MLS

used in the queueing models [4]. The detailed behavior of
job processing in the two architectures is explained in the
following subsections.

TABLE I
PARAMETERS OF TWO-INPUT MLSS

Parameter Description
λ1 Arrival rate of version 1 input.
λ2 Arrival rate of version 2 input.
µ1 Service rate of the Prediction module for version 1 input.
µ2 Service rate of the Prediction module for version 2 input.
µ Service rate of the Comparison module.
K Maximum size of the buffer in the Prediction modules.

A. Parallel type architecture

The parallel type architecture is shown in Fig. 1(a). When
the input data arrives from the Input module to the Prediction
module, if the corresponding Prediction module is idle, the
module starts processing the data. If the Prediction module is
processing the previous arrival data, the input data is stored
in the buffer of the Prediction module. When the inference
result is obtained after the completion of the processing of
the Prediction modules, the module goes into a waiting state,
and the state of the other Prediction module is checked. If
the other Prediction module is also idle, each one sends
the inference result to the Comparison module and checks
the buffer. Otherwise, the Prediction module waits for the
completion of the processing of the other Prediction module.
If there is still input data in the buffer, the Prediction module
starts processing the data at the head of the buffer. Otherwise,
the module becomes idle until the next data arrives.

B. Shared type architecture

The shared type architecture is shown in Fig. 1(b). When
the input data arrives from the Input module to the Prediction
module, if the Prediction module is idle, the module starts
processing the data. When the Prediction module completes
the processing and results for both version 1 and version 2
input are obtained, the Prediction module sends the results to
the Comparison module and checks the buffer to find the next

data. If each result has not been obtained, the module enters
the waiting state and checks the buffer to obtain the other
version of input data. If the Prediction module is processing
the previous arrival data, the input data is stored in the buffer
of the Prediction module like the parallel type architecture.
If the Prediction module is in a waiting state, the module
checks its own buffer. If the version of data at the head of
the buffer is different from the one just finished, the module
starts processing the data. If the input data version is the same
as the finished data, the checked data is dropped from the
buffer, and the module checks the next data. When the buffer
becomes empty, the module stays idle and waits for the next
data arrival.

IV. IMPLEMENTATION

This section describes the experimental system developed
to evaluate the performance of the two-input MLSs.

A. System configuration

We built the experiment system composed of four PINEs,
which are widely used single-board computers. Each machine
is configured as an Input module, a Prediction module, or
a Comparison module. PINE is a single-board computer de-
veloped by PINE 64 with Quad-core ARM Cortex-A53. The
specifications of the machine used in the experiment are as
follows.

• CPU: Quad-core ARM Cortex-A53 Processor@1152Mhz
• RAM Memory: 2GB
• OS: Armbian 22.05.3 Focal
The four PINEs are connected to a switching hub via

Gigabit Ethernet and used for deploying an Input module,
two Prediction modules, and a Comparison module. PINEs
communicate with each other using the TCP protocol. Fig. 2
shows our experimental system. The left-most machine is
assigned as the Input module, the second one and the third
one are the Prediction modules, and the right-most machine is
worked as the Comparison module.

Fig. 2. The experimental system composed of four PINEs

B. ML model

We consider an image classification task for the MNIST
dataset as an ML model. MNIST is a dataset of handwritten
digit images [12]. A cloud-based development environment



Google colaboratory and the ML framework PyTorch are
used to train an ML model. We used a convolutional neural
network (CNN) trained with 60000 MNIST training data. For
the training, we used ReLU (Rectified Linear Unit) as the
activation function, Cross-entropy Loss as the loss function,
and Adam as the optimization function. The accuracy of the
trained model for 10000 MNIST test data is 95.9%.

C. Modules of the MLS

We implemented the Python programs that run on each
module.

Input module. The Input module generates input data from
the MNIST test data and sends the data to the Prediction
module. The test data is divided into ten batch data by each
correct label, and the module generates an input data stream
for each batch data randomly. The same test data is reused if
the size of the test data for each class is less than 10000. The
two versions of data to be sent are the original MNIST data
(version 1 input) and shifted data by one pixel to the upside
(version 2 input). Any other kinds of small image perturbations
can be used to generate version 2 input as studied in [7], but
one-pixel shifted data is used in our study. We assume that
the correct label for version 2 input is the same as the correct
label for the corresponding version 1 input. The input data are
sent in two interval patterns, following the Poisson distribution
and sending the constant time intervals.

Prediction module. In the parallel type architecture system,
the same ML model is deployed to two PINEs and used for
the Prediction modules. On the other hand, in the shared type
architecture system, one PINE is used for a Prediction module.
We use PyTorch to run the ML model in the module. When the
input data arrives at the module, if the corresponding module
is in a processing or waiting state, the input data is stored in
the buffer without processing the next inference.

Comparison module. We also assigned one PINE for the
Comparison module and implemented a process to decide the
final output of the system by comparing two inference results
for version 1 and version 2 input in the order of arrival. When
two results are the same, the Comparison module outputs the
result. Otherwise, the module does not make any output.

V. EXPERIMENT PROCEDURE

This section describes the performance evaluation experi-
ments using real two-input MLSs introduced in the previous
section. First, we describe performance and reliability metrics
of interest and then explain the performance measurement
procedure.

A. Performance and reliability metrics

We use the following metrics to evaluate the reliability and
performance of the output of the MLSs.

Comparison ratio. The number of comparison processes is
counted by the number of data pairs compared in the Compar-
ison module. We define the comparison ratio as the ratio of the
number of comparison processes over the total number of data
pairs sent from the Input module. The comparison ratio can

deteriorate due to data loss during the transmission or drops
at the buffer.

Correct output ratio. The number of outputs represents
the number that the Comparison module produces output (i.e.,
the output is made when two inference results are the same).
We define the number of correct outputs as the number of
outputs that match the correct labels. The correct output ratio
is computed by dividing the number of correct outputs by the
number of outputs.

Response time for the strict condition and the loose
condition. In two-input MLSs, there is a time lag between
the times when each version of data in the pair is sent from
the Input module. When we calculate the response time based
on the data sent earlier, the response time includes the waiting
time in the buffer. Thus, this kind of response time becomes a
large value. The response time based on the data sent earlier is
called the response time for the strict condition. On the other
hand, the response time based on the data sent later is called
the response time for the loose condition. The response time
for the strict condition is always longer than the response time
for the loose condition.

Energy consumption. We used a Bluetooth watt checker
to measure energy consumption. We start measuring and
recording the energy consumption when the experiment is
started. We calculate the average energy consumption during
the experiment from the recorded file.

B. Performance measurements

The data input interval is set to 0.1 seconds. In the case of
data input interval following the Poisson distribution, data is
sent with arrival rate λ1 = λ2 = 10. The maximum size of the
buffer of the Prediction module is set to K = 80. When the
new data arrives at the Prediction module, if the size of the
buffer is larger than or equal to K, the data is discarded. We
also measure the performance of a single version of the MLS
for the purpose of comparison. In the single version system,
the Comparison module simply outputs the inference results
from the Prediction module. Each performance measurement
is conducted five times, and we use the average values for the
evaluation.

C. Service time measurements

We also measure the service time of the Prediction mod-
ule in the MLSs. Service time indicates the time required
for module processing (i.e., ML model inference). A single
version MLS is used for measuring the service time of the
Prediction module. We send data 500 times for each batch
data corresponding to numbers 0 to 9, and measure the service
times for individual samples. We also measure the service
time of the Comparison module of the two-input MLSs. In
the experiment, we sent data 10000 times to each of the
parallel type architecture and the shared type architecture, and
measured the time taken to obtain comparison results.



VI. RESULTS

A. Reliability of output

Table. II shows the mean correct output ratio of the perfor-
mance measurements mentioned in Section V-B in the parallel
type architecture and the shared type architecture with the
Poisson distribution data input and the constant interval input.
The first row shows the case that the data input interval follows
the Poisson distribution. The correct output ratio is 99.58 %
for the parallel type architecture MLS, and 99.88 % for the
shared type. Both values are higher than 96.78 %, which is
the accuracy of the single version MLS. The results indicate
that two-input MLS can improve the reliability of the output
by exploiting data diversity, as expected from the theoretical
results [3]. Comparing the two architectures, the shared type
architecture has a slightly higher correct output ratio. The
second row shows the case that the data input interval is
constant. The correct output ratio is 99.73 % for the parallel
type architecture, and 99.53 % for the shared type. Both values
are higher than 96.76 %, which is the accuracy of the single
version MLS. In the case of constant input data arrival, both
two-version MLS architectures have higher values than the
case of the single version system. These results indicate that
the input data interval does not affect the correct output ratio.

TABLE II
MEAN CORRECT OUTPUT RATIO OF THE PERFORMANCE MEASUREMENTS

Parallel type Shared type 1-ver.
Poisson distribution 0.9958 0.9988 0.9678
Constant interval 0.9973 0.9953 0.9676

Next, Table. III shows the comparison ratio in the Compari-
son module for both input data intervals, following the Poisson
distribution and arrival interval. In the case of the data input
interval following the Poisson distribution, the comparison
ratio of the shared type architecture is 66.39 %, and the
remaining 33.61 % is discarded in module processing or lost
during the communication. This result certainly agrees with
the theoretical observation that the throughput decreases to
2/3 in the shared type architecture [4]. On the other hand, for
the data input with constant intervals, the throughput of the
shared type does not decrease extremely like in the case of
the Poisson arrival. This is because two input data, version 1
and version 2 input, are alternately sent by constant interval,
which reduces the possibility of burst arrival of the same input
data. The comparison ratio of the parallel type is close to one
but slightly lower than the single version.

TABLE III
MEAN COMPARISON RATIO OF THE PERFORMANCE MEASUREMENTS

Parallel type Shared type 1-ver.
Poisson distribution 0.9943 0.6639 0.9997
Constant interval 0.9982 0.9996 0.9993

B. Response time

Table. IV shows the average response times for the two
different input data arrival patterns. The response times are
divided into two exclusive conditions: the strict condition and
the loose condition.

TABLE IV
MEAN RESPONSE TIME OF THE PERFORMANCE MEASUREMENTS

(a) Both of the strict and the loose conditions [s]

Parallel type Shared type 1-ver.
Poisson distribution 1.7722 0.1176 0.0585
Constant interval 0.3101 0.0925 0.0437

(b) Strict condition [s]

Parallel type Shared type
Poisson distribution 3.4753 0.1679
Constant interval 0.5725 0.1328

(c) Loose condition [s]

Parallel type Shared type
Poisson distribution 0.0690 0.0674
Constant interval 0.0478 0.0522

Table. IV(a) shows the mean response times in both strict
and loose conditions. In the Poisson distribution case, the
response times in both the parallel type and the shared type
architecture MLSs are longer than that of the single version
MLS. The response times of the parallel type architecture are
significantly affected by the waiting time in the buffer due
to the randomness of the data arrival. The response times in
the constant interval case for both architectures of two-input
MLSs are also longer than that of the single version MLS.
We observe the response times in constant interval inputs are
shorter than the response times in the Poisson distribution case.
Similarly, the response time of the parallel type architecture
is greatly affected by the waiting time in the buffer due to
random arrival times. For the Poisson distribution case, the
parallel type MLS takes 15.1 times longer than the shared
type. In the case of constant intervals, the parallel type takes
3.35 times longer than the shared type.

Table. IV(b) shows the average response time for the strict
condition (i.e., the response time includes the waiting time
in the buffer of the Prediction module). For the Poisson
distribution case, the response time for the parallel type
architecture is 20.7 times longer than that for the shared
type. Comparing the response times between the parallel and
shared type architectures, the parallel type takes 4.31 times
longer than the shared type. Since all the response times for
the strict condition include the waiting time in the buffer of
the Prediction module, the difference in the response times
between the parallel type and the shared type becomes large
compared with the response times for both conditions in
Table. IV(a).

Table. IV(c) shows the average response time for the loose
condition (i.e., the response time does not include the waiting
time in the buffer). For the Poisson distribution case, the



(a) Parallel type, Poisson distribution (b) Shared type, Poisson distribution (c) single-version, Poisson distribution

(d) Parallel type, Constant interval (e) Shared type, Constant interval (f) single-version, Constant interval

Fig. 3. Response time distributions of the strict and the loose condition

response time of the parallel type architecture takes 1.02 times
longer than that of the shared type. The response time for the
parallel type architecture is 0.92 of that for the comparing
shared type. In the response time for the loose conditions, the
waiting time in the buffer is not included. Therefore, there
is no large difference in the response time between the two
architectures.

Fig. 3 shows the distributions of the response time for the
strict, loose, and both conditions in different architectures. The
horizontal axis indicates response time in seconds, while the
vertical axis indicates the probability. Referring to Fig. 3(a)
and Fig. 3(b), in the case of the Poisson distribution, the
response time of both architectures is influenced by the re-
sponse time of the loose condition. The probability is sharply
increased at first and then slowly increased to 100 %. Also,
referring to Fig. 3(d), Fig. 3(e), and Fig. 3(f), the response time
increases step by step when data is sent at constant intervals.

C. Energy consumption

We measured the energy consumption every second. The
average energy consumption during the experiment is 12.03
W for the parallel type architecture and 8.96 W for the shared
type architecture. The energy consumption of the shared type
architecture was 25.52 % smaller than the parallel type one.
This is due to the difference in the number of machines used
for each architecture. In the parallel type architecture case, the
system is configured with four machines, while in the shared
type case, the system uses only three machines.

D. Service time of the Prediction module

Table. V shows the mean service time, standard deviation,
and coefficient of variation (CV) obtained from the perfor-
mance measurement experiments. For the input data interval
following the Poisson distributions, the mean service time is
36.29 ms, the standard deviation is 1.46 ms, and the CV value
is 0.0403. For the constant interval, the mean service time is
35.62 ms, the standard deviation is 1.26 ms, and the CV value
is 0.0354. The service rate of the Prediction module is 27.56
for the Poisson distribution and 28.07 for the constant interval.
Although the arrival process is assumed to be independent
of the service time distribution in the queueing analysis, the
service time in the real system is slightly affected by the arrival
process (i.e., the processing rate of the computer likely slows
down by the randomness of the arrival process).

TABLE V
SERVICE TIME STATISTICS OF THE PREDICTION MODULE

Poisson distribution Constant interval
Mean [ms] 36.29 35.62
Standard deviation [ms] 1.46 1.26
CV 0.0403 0.0354
Service rate 27.56 28.07

Then, we use the Python Fitter library, which is provided
for fitting probability distributions to observed data. The
service time measurement results are fitted in five types
of distributions: the log-normal distribution (lognorm), the



(a) Poisson distribution (b) Constant interval

Fig. 4. Fitting results of service time of the Prediction module Fig. 5. Service time of the Comparison module

exponential distribution (expon), the power-law distribution
(powerlaw), the Erlang distribution (erlang), and the gamma
distribution (gamma). Table. VI shows the fitting parameters
for the five distributions. Location parameters µ are almost
the same, while the shape parameters and scale values σ
differ in individual distributions. Table. VII shows the results
of calculating the Sum of Squared Error (SSE). When the
input data follows the Poisson distribution, the log-normal
distribution achieves the best fit, followed by the gamma
distribution and the exponential distribution. In the case of
constant intervals, the order of the best-fitting results is the
log-normal distribution, the exponential distribution, and the
power-law distribution. Fig. 4 shows fitting results of the ser-
vice time distribution of the Prediction module. The horizontal
axis represents service time, and the vertical axis represents
the number of data. From the results shown in Table. VI and
Fig. 4, the log-normal distribution is considered the best-fitted
distribution regardless of the type of input data arrivals. The
results imply that the exponentially distributed service time
of an ML module assumed in the queueing analysis [4], [5],
[9] needs to be adjusted when considering a more accurate
performance prediction.

TABLE VI
FITTING PARAMETERS OF SERVICE TIME OF THE PREDICTION MODULE

(a) Poisson distribution
µ[s] σ[s] Shape parameter

Log-normal 0.0349 0.0013 s = 0.578
Exponential 0.0352 0.0013 -
Power-law 0.0352 0.0225 a = 0.319
Erlang 0.0352 0.8910 k = 0.140
Gamma 0.0351 0.0008 k = 1.609

(b) Constant interval
µ[s] σ[s] Shape parameter

Log-normal 0.0344 0.0010 s = 0.418
Exponential 0.0345 0.0010 -
Power-law 0.0345 0.0220 a = 0.304
Erlang 0.0345 0.0033 k = 0.313
Gamma 0.0345 0.0188 k = 0.047

TABLE VII
SSE [105] OF FITTING RESULTS OF SERVICE TIME

Poisson distribution Constant interval
Log-normal 0.341 2.30
Exponential 5.96 25.4
Power-law 12.5 33.9
Erlang 15.0 37.1
Gamma 1.87 37.9

E. Service rate of the Comparison module

Out of 10000 input data, 9943 comparison results were
obtained for the parallel type architecture MLSs, and 6612
comparison results were obtained for the shared type. We
obtained the mean service time, the standard deviation, the
minimum value, and the maximum value for each architecture.
The service time is calculated from the mean processing time.
Table. VIII shows the results of service time statistics spent
in the Comparison module. Both service rates of the parallel
type and the shared type architecture MLSs are sufficiently
large, and both standard deviations are sufficiently small. The
service rate of the parallel type is larger than that of the shared
type. In the case of the parallel type, the Comparison module
receives two inference results at the same time, while in the
case of the shared type, the module receives an inference result
each time the Prediction module obtains the result. Thus, the
number of processing steps is increased, and the service rate
becomes slightly decreased in the shared type case.

In addition, 5000 data are sampled from comparison results
for each architecture, and the distribution of the service time
is investigated. Fig. 5 shows the service time distribution
of the Comparison module. The horizontal axis represents
service time, and the vertical axis represents the probability. As
observed in the standard deviation in Table. VIII and Fig. 5, the
service time of the Comparison module is most likely constant.

VII. COMPARISON WITH SIMULATION RESULTS

In this section, we compare the response time measured
in the real MLSs and the response time obtained by a
simulation program. The simulation program is developed to
evaluate the parallel and the shared type architecture MLSs
using the queueing model [5]. The performance model used
in the simulation is based on the assumption that the data



(a) Parallel type, Both condition (b) Parallel type, Strict condition (c) Parallel type, Loose condition

(d) Shared type, Both conditions (e) Shared type, Strict condition (f) Shared type, Loose condition

Fig. 6. Response time distributions of the simulation and the empirical result

TABLE VIII
SERVICE TIME STATISTICS OF THE COMPARISON MODULE

Parallel type Shared type
Mean [ms] 0.0366 0.0489
Standard deviation [ms] 0.00871 0.00639
Minimum [ms] 0.0284 0.0358
Maximum [ms] 0.170 0.151
Service rate 2.73× 104 2.04× 104

arrival follows the Poisson distribution and the service time is
exponentially distributed.

A. Configuration of simulation programs

We configure the parameters of the simulation program to
be consistent with the experiment system. For both the parallel
type architecture and shared type architecture, the maximum
queue size of each job is set to K = 80, which is the same as
the maximum size of the buffer of the implemented MLSs. The
arrival rates of jobs for version 1 and version 2 input are set
as λ1 = λ2 = 10. The service rates of the Prediction module
are set as µ1 = µ2 = 27.56 for the parallel type architecture
and µ1 = µ2 = 28.07 for the shared type architecture. The
service rate of the Comparison module is set as µ = 2.73×104

for the parallel type architecture and µ = 2.04 × 104 for the
shared type architecture. We executed five simulations each for
the parallel type architecture and the shared type architecture,
and collected 10000 data samples from the simulation results,
excluding the first 1000 data.

TABLE IX
COMPARISON OF THE SIMULATION AND THE EMPIRICAL RESULT

(a) Parallel type architecture [s]

Simulation Empirical
Mean 2.061 1.772
Standard deviation 6.748 5.537
Minimum 0.0000468 0.0422
Maximum 10.500 11.160

(b) Shared type architecture [s]

Simulation Empirical
Mean 0.111 0.118
Standard deviation 0.0099 0.0072
Minimum 0.0000257 0.0411
Maximum 0.857 1.040

B. Results

The simulation results are summarized in Table. IX. The
mean response time of empirical results of the parallel type
architecture is 14.02% shorter than that of the simulation
results. The standard deviation is 17.95% smaller than that
of the simulation results. In the shared type architecture, the
mean response time is 6.31% longer than that of the simulated
results. The standard deviation is 27.27% smaller than that of
the simulation results. The empirical minimum response times
are longer than the simulated minimum response time for both
architectures. This is due to the communication overhead in the
deployed system, e.g., the communication delay has a lower



bound that cannot be an extremely small value.
Fig. 6 shows the response time distributions of simulation

and empirical results. For the parallel type architecture, in
Fig. 6(a), Fig. 6(b), and Fig. 6(c), the empirical results are
mostly higher probability than that of the simulation results.
For the shared type architecture, in Fig. 6(d), Fig. 6(e), and
Fig. 6(f), comparing the two response time distributions, the
simulation result has a higher probability in the range of
< 0.04 because the minimum value is limited due to the
communication overhead when the input interval is very small
in the real MLSs. However, the empirical values become a
higher probability in other ranges, similar to the parallel type
case.

VIII. CONCLUSION

In this paper, we conducted experiments to evaluate the
reliability, performance, and energy consumption of the MLS
in the parallel type and the shared type architectures. We
confirmed that the reliability of MLS is enhanced by the two-
input MLS in both architectures exploiting data diversity. For
the throughput performance, we observed almost the same
results as the theoretical results [5]. In the case of data input
interval following the Poisson distribution, the throughput of
the shared type architecture decreases to 2/3, consistent with
the theoretical study [4]. In terms of response time, the parallel
type architecture took 20.7 times longer than the shared type
architecture. The difference in the response times between
the shared type architecture MLS and the single version in
the strict condition is 0.11 seconds, which is caused by the
influence of the input data interval (i.e., the interval is set to 0.1
seconds in the experiments). Regarding energy consumption,
the parallel type architecture consumes 1.34 times more energy
than the shared type architecture. This is due to the difference
in the number of machines used for the architectures.

Comparing the results of the simulation and the empirical
results, the response time of the empirical result is shorter
than that of the simulation results in the parallel type archi-
tecture. This is due to the difference in the distribution of
the service time of the Prediction module. In the simulation
program, the module service times of the Prediction mod-
ule and the Comparison module are assumed to follow the
exponential distributions. However, we find that the service
time distribution fits better with the log-normal distribution.
For more accurate simulation, it is encouraged to use the log-
normal distribution in the simulation analysis as well. In the
shared type architecture case, the mean response time of the
simulation result is shorter than that of the empirical result.

In summary, we confirmed that the shared type architecture
MLS has a lower energy consumption and a shorter response
time than the parallel type architecture MLS. The shared
type architecture is effective in improving reliability while
suppressing increases in response time and energy consump-
tion. However, since the shared type architecture reduces the
throughput, the parallel type architecture is preferable in terms
of reliability.

ACKNOWLEDGMENT

We would like to thank S. Nishio for his assistance with the
simulation program. This work is supported in part by JSPS
KAKENHI Grant Numbers 18K18006 and 22K17871.

REFERENCES

[1] I. Goodfellow, J. Shlens, and C. Szegedy, ”Explaining and harnessing
adversarial examples,” https://arxiv.org/abs/1412.6572, 2015.

[2] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, ”Safety verification
of deep neural networks,” Proceedings of International Conference on
Computer Aided Verification, pp.3-29, 2017.

[3] F. Machida, ”N-version machine learning models for safety critical
systems,” Proceedings of DSN Workshop on Dependable and Secure
Machine Learning, pp. 48-51, 2019.

[4] Y. Makino, T. Phung-Duc, and F. Machida, ”A queueing analysis of
malti-model multi-input machine learning systems,” Proceedings of The
4th DSN Workshop on Dependable and Secure Machine Learning, 2021.

[5] S. Nishio, Y. Makino, T. Phung-Duc, and F. Machida, ”Performance
Analysis of Energy-Efficient Reliable Machine Learning System Archi-
tectures,” http://dx.doi.org/10.2139/ssrn.4431918, 2023.

[6] F. Machida, ”On the diversity of machine learning models for system
reliability,” Proceedings of IEEE Pacific Rim International Symposium
on Dependable Computing (PRDC), pp. 276-285, 2019.

[7] M. Takahashi, F. Machida, and Qiang Wen, ”How data diversification
benefits the reliability of three-version image classification systems,”
Proceedings of IEEE Pacific Rim International Symposium on Depend-
able Computing (PRDC), pp. 34-42, 2022.

[8] A. Ali, R. Pinciroli, F. Yan, E. Smirni, ”Optimizing inference serving
on serverless latforms,” Proceedings of the VLDB Endowment, Volume
15, Issue 10, pp. 2071–2084, 2022.

[9] J. Lee, P. Wang, R, Xu, V. Dasari, N. Weston, Y. Li, S. Bagchi, and
S. Chaterji, ”Virtuoso: Video-based intelligence for real-time tuning
on SOCs,” ACM Transactions on Design Automation of Electronic
Systems, Association for Computing Machinery New York, NY, United
States, 2022.

[10] J. Deng, Y. Pan, T. Yao, W. Zhou, H. Li, T. Mei, ”Relation distilla-
tion networks for video object detection,” Proceedings of IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 7022-7031,
2019.

[11] A. Canziani, A. Paszke, E. Culurciello, ”An analysis of deep neu-
ral network models for practical applications,” arXiv preprint arXiv:
1605.07678, 2016.

[12] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, ”Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, Volume 86,
Issue 11, pp. 2278-2324, 1998.


