Reliability and Performance Evaluation of Two-input Machine Learning Systems

Kazuya Wakigami, Fumio Machida, Tuan Phung-Duc University of Tsukuba

Outline

- 1. Introduction
- 2. Related Work
- 3. Two-input Machine Learning Systems
- 4. Experiment Procedure
- 5. Empirical Results
- 6. Comparison with Simulation Results
- 7. Conclusion

Introduction

28th IEEE Pacific Rim International Symposium on Dependable Computing

3

Introduction(1)

- ML (Machine Learning) models have been widely used.
- Applications of MLs are expanding in the fields requiring safety and high reliability, such as medical image diagnosis and autonomous vehicles.

• Prediction errors may cause serious problems.

Introduction(2)

- N-version MLS (Machine Learning System) [1]
 - A redundancy architecture
 - Use more input and/or ML modules.
 - Decrease throughput performance.

[1] F. Machida, "N-version machine learning models for safety critical systems," Proceedings of DSN Workshop on Dependable and Secure Machine Learning, pp. 48-51, 2019.

Introduction(3)

- Two-input MLS
 - One architecture of the N-version MLSs.
 - System output are determined by two prediction results for two input.

Related Work

Related Work(1)

- Throughput performance of two-input MLSs is evaluated in [2].
 - If the arrival rate cannot be changed and the processing speed is sufficiently large, the parallel type has higher throughput than the shared type.

[2] Y. Makino, T. Phung-Duc, and F. Machida, "A queueing analysis of multi-model multi-input machine learning systems," Proceedings of The 4th DSN Workshop on Dependable and Secure Machine Learning, 2021.

- Response time and power consumption of two-input MLSs is evaluated in [3].
 - Shared type architecture has lower response time and energy consumption than parallel type architecture.

[3] S. Nishio, Y. Makino, T. Phung-Duc, and F. Machida, "Performance Analysis of Energy-Efficient Reliable Machine Learning System Architectures," http://dx.doi.org/10.2139/ssrn.4431918, 2023.

Related Work(2)

• The latency and energy consumption of the object detection model are evaluated in [4].

[4] J. Lee, P. Wang, R, Xu, V. Dasari, N. Weston, Y. Li, S. Bagchi, and S. Chaterji, Virtuoso: Video-based Intelligence for real-time tuning on SOCs, ACM Transactions on Design Automation of Electronic Systems, Association for Computing Machinery New York, NY, United States, 2022.

• Accuracy, inference time, and energy consumption of the image classification tasks are analyzed in [5].

[5] A. Canziani, A. Paszke, E. Culurciello, "An analysis of deep neural network models for practical applications," arXiv preprint arXiv: 1605.07678, 2016.

Difference with Related Work

- The performance of two-input MLSs has been theoretically investigated in the previous study using queueing analysis.
- However, the existing studies have not verified the performance characteristics of two-input MLSs with real MLSs.
- In our study, we implement two-input MLSs and empirically investigate the performance characteristics of real MLSs.

Two-input Machine Learning Systems

11

Two-input MLSs(1)

- In the previous work [2] and [3], the parallel type and the shared type architectures are theoretically evaluated.
- If the inference results are not matched, the system can find that at least one of the results is wrong, and hence, an incorrect system output can be suppressed.
- In the case of image classification task using number images:

Two-input MLSs(2)

• In our work, we focus on two architectures of two-input MLS

Parallel type architecture

- Version 1 and Version 2 input are sent to different Prediction modules.
- All the inference results are sent to the Comparison module that decides the final output of the system.

Shared type architecture

Shared type

- Version 1 and Version 2 input are sent to the same Prediction module.
- All the inference results are sent to the Comparison module that decides the final output of the system.

Experiment Procedure

28th IEEE Pacific Rim International Symposium on Dependable Computing

16

PINEs

- We Implement the experiment system composed of four PINE A64s.
- Specifications
 - CPU: Quad-core ARM Cortex-A53 Processor@1152Mhz
 - RAM Memory: 2GB
 - OS: Armbian 22.05.3 Focal

ML model

- We consider an image classification task for MNIST dataset as an ML model.
- Google colaboratory, PyTorch as an ML framework
- CNN (Convolutional neural network) trained with 60,000 MNIST training data.
- ReLU (Rectified Linear Unit) as the activation function
- Cross-entropy Loss as the loss function
- Adam as the optimization function.

Example of the MNIST dataset

Performance measurements

- Predict Input Predict Parallel type Input Predict Compare Compare Compare Shared type
- We built two experiment systems, parallel and shared type architecture, using PINEs and ML model.
- The input data are sent in two interval patterns.
 - Following the Poisson distribution (arrival rate $\lambda 1 = \lambda 2 = 10$).
 - Constant time intervals (0.1 seconds).
- The maximum buffer size of the Prediction module is set to K = 80.

Service time measurements

- We also measure the service time of the Prediction module in the MLSs.
- Service time indicates the time required for module processing (i.e., ML model inference).
- Send input data 10,000 times for each architecture.

Empirical Results

21

Correct output ratio - Empirical

- Input
 Predict

 Predict
 Compare

 Predict
 Predict

 Input Predict
 Compare
 Compare
- Shared type
- The correct output ratio is computed by dividing the number of correct output by the number of output.
- Two-input MLS can improve the correct output ratio by exploiting data diversity, as expected from the theoretical results [3].

Comparison ratio - Empirical

• Comparison ratio:

the ratio of the number of comparison processes the total number of data pairs sent from the Input module [.]

• In the case of the data input interval following the Poisson distribution, the comparison ratio of the shared type architecture is 66.39 % ($\Rightarrow \frac{2}{3}$).

Table 2. Mean comparison ratio

	Parallel type	Shared type	1-ver.
Poisson distribution	0.9943	0.6639	0.9997
Constant interval	0.9982	0.9996	0.9993

Response time(1)

- Two-input MLSs have longer response time.
- Response time (parallel, Poisson) is significantly affected by the waiting time in the buffer due to the randomness of the data arrival.
- Response times (constant interval) are shorter than the response times in the Poisson distribution case.

Response time(2)

- Parallel type has large range of values about 0s to 10s, and about 50% is shorter than 0.04s.
- Shared type also has larger range 0s to 0.5s than single version.

Energy consumption

- Energy consumption is measured in every second.
- The mean energy consumption of the shared type architecture is 25.52 % smaller.
- This is due to the difference in the number of machines used for each architecture.

Table 4. Energy consumption

	Energy consumption [W]
Parallel type	12.03
Shared type	8.96

Inference time distribution

- We measure the inference time and use fitter library.
- The log-normal distribution, yellow line (×) is well fitted. Shared type

Compare

Compare

Here

Input

Predict

| Input 📑 Predict

Parallel type

Comparison with Simulation Results

28

Comparison with Simulation Results(1)

- We compare the response time measured in the real MLSs and the response time obtained by a simulation program.
- The simulation program is developed using the queueing model [3].
- Configuration of the simulation program
 - Parameters are set to be consistent with the empirical system.
 - Inference time distribution is different. (simulation: exponential, empirical: log-normal).

Comparison with Simulation Results(2)

Table 5. Comparison of the response time

(a) Parallel type architecture [s]

- The mean response time of empirical results is shorter in the parallel type architecture.
- In the shared type architecture, the result become the opposite.
- The empirical minimum response times are longer for both architectures.

	Simulation	Empirical		
Mean	2.061	1.772		
Standard deviation	6.748	5.537		
Minimum	0.0000468	0.0422		
Maximum	10.500) 11.160		
(B) Shared type architecture [s]				
	Simulation	Empirical		
Mean	0.111	0.118		
Standard deviation	0.0099	0.0072		
Minimum	0.0000257	0.0411		
Maximum	0.857	1.040		

Conclusion

31

Conclusion(1)

- We conducted experiments to evaluate the reliability, performance, and energy consumption of the MLS in the parallel type and the shared type architectures.
- The shared type architecture MLS has a lower energy consumption and a shorter response time.
- The parallel type architecture is preferable in terms of reliability since the shared type architecture reduces the throughput.

Conclusion(2)

- We compared our empirical results and the results of the simulation program [3].
- The response time of the empirical result is shorter. This is due to the difference in the distribution of the service time of the Prediction module.
- The service time distribution of the ML module fits better with the log-normal distribution