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Abstract—The N-version machine learning (ML) system is 
an architecture approach to enhance the reliability of ML 
system outputs by exploiting ML model diversity and input 
data diversity. While existing studies theoretically show the 
relation between diversity metrics and system reliability, 
there is a shortage of empirical studies validating reliability 
models with diversity parameters in real datasets. In this 
paper, focusing on traffic sign recognition tasks, we 
empirically analyze the impact of diversity parameter 
estimations for predicting the reliability of three-version 
traffic sign classifier systems. Using five real-world traffic sign 
datasets, we confirm that the three-version architecture 
effectively enhances system reliability by applying diverse 
models and diversified input images. Then, we estimate the 
diversity parameters and apply them to variants of reliability 
prediction models. The prediction residuals between the 
observed reliability and the predicted reliability are mostly 
less than 0.017 across all data sets, which is half of the residual 
achieved by the conventional prediction model, except for the 
architecture of a single model with triple input. As the 
estimated values of diversity parameters tend to be stable with 
a relatively small number of samples, we consider that the 
reliability prediction models using diversity parameters are 
useful in the early-stage design of ML systems. 

Keywords—Classification, Diversity, Machine learning 
system, N-version programming, Reliability 

I. INTRODUCTION 
In recent years, machine learning (ML) techniques are 

developed rapidly and applied widely in various technical 
fields. Our daily lives tend to depend on ML-based 
intelligent software systems, such as face recognition, 
medical diagnosis, autonomous robots, and vehicles. As 
ML models used in such systems are trained from previous 
samples and are sensitive to new input data, inference 
errors on real input data are inevitable in many practical 
situations. However, incorrect outputs from ML models 
may cause serious problems if they are used in safety-
critical systems. For instance, the misrecognition of traffic 
signs by ML model-based classifiers could lead to traffic 
accidents in autonomous driving [38]. Therefore, it is a 
stringent issue to secure the reliability of outputs from ML-
based systems. 

To provide reliable ML systems, multiple versions of 
ML models and input data sources are configured as a 
redundant system architecture, which is called N-version 
machine learning (ML) systems [10]. The reliability 
improvement by different architectures of N-version ML 
systems can be characterized by diversity metrics. Recent 
studies exploit diversity metrics to formulate the reliability 
of N-version ML system outputs [3][10]. Meanwhile, the 
diversity of ML models in terms of prediction errors in N-

version ML systems is observed by measuring the mutual 
error rate [4] and the coverage of errors [19][20]. A recent 
study used the Gini coefficient and the Shannon equitability 
index to measure the diversity of ML models [21]. 
However, none of the existing works empirically 
disentangle the impacts of diversity due to ML model's 
ability and the diversity in different input data sources. It is 
known that the reliability of the architecture, like the 
double-model double-input (DMDI) system, is affected by 
both model diversity and input diversity [10]. Analyzing 
the joint impact of two types of diversities on the reliability 
of N-version ML systems with real data sets is a key 
challenge addressed in this work. 

In this paper, to investigate the reliability improvement 
of N-version ML systems and the impact of diversity 
metrics on N-version ML system reliability, we conduct 
experiments with traffic sign recognition tasks using five 
real-world traffic sign datasets from different countries [22-
26]. We configure three-version traffic sign classifier 
systems that consist of three ML modules for traffic sign 
classification and a majority voter for determining the final 
classification result. Each ML module may deploy the same 
ML model or diverse ML models. The three-version traffic 
sign classifier systems may also use diverse inputs. To 
create slightly different versions of input data, we apply 
image transformation methods, such as noise addition and 
image rotation. Depending on the choice of models and 
input data, the classifier system architectures can be 
divided into three types, namely Triple-Model Single-Input 
(TMSI), Single-Model Triple-Input (SMTI), and Triple-
Model Triple-Input (TMTI). To predict the reliability 
improvement by the three-version architectures, we 
measure the model diversity and the input data diversity by 
the intersection of errors and the conjunction of errors, 
respectively, observed by the ML modules with test data 
sets. The estimated values are applied to the reliability 
models for three-version systems. Based on the existing 
models [3], we propose five variants for each reliability 
prediction model by considering different combinations of 
diversity parameters for a triple error probability. We 
validate the reliability prediction models by comparing the 
predicted reliability with the observed reliability for five 
data sets. The results show that the prediction residuals are 
less than 0.017, 0.07, and 0.012, for TMSI, SMTI, and 
TMTI architectures, respectively, across all data sets. We 
find that the variants of reliability prediction models are 
equally effective and considerably better than the reliability 
prediction by the conventional model [9] which assumes 
homogeneous dependence parameters among different ML 



models. In summary, we give the following contributions 
in this paper. 

1. Through the experiments with five real-world traffic 
sign datasets, we show that the reliability of the traffic 
sign classification system is improved by employing the 
three-version ML architecture. 

2. We consider several variants of reliability models for 
three-version ML architectures and empirically show 
that they are equally effective to predict the reliability 
of three-version traffic sign classifier systems compared 
with the conventional N-version system reliability 
model. 

3. We provide some findings from the empirical studies of 
diversity parameter estimations for reliability 
prediction, e.g., the number of samples required for 
estimating fairly stable diversity parameter values. 

The remainder of the paper is organized as follows. 
Section II describes related work. Section III explains the 
reliability models used in the following experiment. 
Section IV clarifies the research questions addressed in the 
empirical study. Section V describes the experiment 
configuration. Section VI shows the results of the reliability 
analysis and gives answers to the research questions. 
Finally, Section VII describes the conclusion. 

II. RELATED WORK 
To enhance the reliability of ML systems, various 

approaches have been studied, such as ML testing, data 
validation, safety monitors, and redundant architectures. 
ML testing focuses on identifying and resolving 
discrepancies between existing ML models and required 
conditions [27].   For instance, DeepXplore is an automated 
white-box testing approach that can detect incorrect 
behaviors in autonomous driving systems [28]. To detect 
real-world error-inducing corner cases at runtime, Deep 
Validation leverages the data validation approach that is 
also based on white box models for deep neural networks 
[29]. Several safety monitors have been presented for 
detecting out-of-distribution data at runtime [30][34]. 
However, such monitors need to be trained together with 
the ML model in advance. In contrast, the redundant 
architecture approaches [4][10][33] can achieve improved 
reliability through a simple redundancy scheme with 
diversity and does not require separate procedures for 
training monitors or white box models.  

Many recent studies have investigated multi-version 
ML approaches to improve ML system reliability. N-
version programming for ML components is revealed to 
have a huge potential to improve the overall reliability of 
ML components [2]. NV-DNN is proposed to improve the 
fault-tolerant ability of deep learning systems. It consists of 
N independently developed models and decision-making 
procedures [4]. Besides, a voting-based ensemble approach 
using multiple diverse machine learners is also used for 
improving the accuracy of intrusion detection [32]. Other 
studies show that diversified input data can also be used to 
improve the reliability of N-version ML systems [3] 
[19][20]. A multimodal deep learning approach is proposed 
to improve the classification accuracy of remote-sensing 

imagery, which achieves better results than single-model or 
single-modality approaches [31]. However, none of the 
above studies shows the estimations of diversity parameters 
and their impact on the N-version architecture reliabilities. 

Several diversity measures have been presented for 
ensemble methods that are broadly divided into pairwise 
measures and non-pairwise measures [14]. To measure 
ensemble diversity, a classical approach is to measure the 
pairwise similarity/ dissimilarity between two learners and 
then average all the pairwise measurements for the overall 
diversity [14]. Disagreement measure [6], Q-statistic [15], 
correlation coefficient [16], and kappa-statistic [17] are 
different pairwise measures for diversity measurement. 
Among them, the correlation coefficient is a classic statistic 
for measuring the correlation between two binary vectors. 
Kappa-statistic is utilized to measure the diversity between 
two classifiers. For non-pairwise measures, interrater 
agreement [7], entropy [8], and coincident failure [18] are 
measures that estimate diversity directly. A recent study 
introduces the Gini coefficient and the Shannon equitability 
index to measure the diversity of ML models [21]. In this 
paper, the diversity estimation can be considered a pairwise 
measure. We focus on the joint impact of model diversity 
and input diversity that characterize the reliability of 
different architectures of N-version ML systems. 

III. RELIABILITY MODEL 
This section introduces the reliability models and the 

diversity metrics that are examined in our empirical study.  

A. Two-version and Three-version Machine Learning 
Systems 
N-version ML architecture contains N different versions 

of ML modules that work for the same task at the same time. 
In N-version ML architectures, we can use multiple inputs 
and ML models in a system. As it is shown in Fig. 1, 𝑥!, 	𝑥" 
and 	𝑥# represent the inputs to ML models from different 
data sources (e.g., sensors), while 𝑚!, 𝑚" and 𝑚# represent 
different ML models dealing with the same task. Double 
model with double input system (DMDI) consists of two 
ML models 𝑚!  and 𝑚"  which receive inputs 𝑥!  and 	𝑥" 
respectively, voting on the inference results to determine the 
system output. Three-version architectures can be divided 
into three categories, which are TMSI, SMTI, and TMTI as 
shown in Fig. 1. In this paper, we focus on these four 
architectures. 

 
 

  
Fig. 1. Two-version and three-version architectures. 

B. Conventional Reliability Model for N-version Systems 
Unlike traditional hardware redundancy modules, the 

reliability of N-version systems cannot assume the 
complete independence of module failures [1]. Therefore, 



a reliability model considering N-version programming is 
presented using a dependent failure parameter [9]. The 
parameter 𝛼 measures the similarity percentage of the input 
sets on which each pair of versions fail. Assuming the 
failure probability of each version to be 𝑝, the reliability of 
a three-version system is given by 

𝑅 = 1 − [3𝛼𝑝(1 − 𝛼) + 𝛼"𝑝] = 1 − 𝛼𝑝(3 − 2𝛼). (1) 

Although this model can capture the dependence of 
modules, the ratio of the dependence is regarded as 
homogeneous which may not be true in reality. Moreover, 
the dependent failure parameter 𝛼  is not enough to 
represent the dependence or similarity of input data for ML 
modules. To overcome the issues, we consider the 
reliability models using two diversity metrics. 

C. Reliability Models using Model Diversity and Input 
Diversity 
In this section, we review the reliability models in 

[3][19] and propose variants of the reliability models. We 
define system reliability as the probability that the output 
of the system is correct. We assume the correct output is 
determined by checking if the system's predicted label 
matches the correct label from the test datasets in the 
following sections. In real applications, the correct output 
refers to the output that aligns with the ground truth. Define 
𝑅$,& as the reliability of a ML system with 𝑖 versions with 𝑗 
diversity inputs. For example, a system using a single 
model with single input can be given by 𝑅!,! = 1 −
|𝐸'|/|𝑆| , where 𝑆  represents the total sample space of 
inputs and 𝐸' ⊆ 𝑆  is the set of input data that leads to 
output error by 𝑚'.  

Reliability models for N-version ML architectures 
introduce two types of diversity parameters that are model 
diversity and input diversity [19]. The model diversity is 
measured by the intersection of errors that is proportional 
to the ratio of input data sets that cause double errors of two 
ML models. The metric characterizes the diversity of ML 
models with respect to inference errors. The intersection of 
errors 𝛼(,) ∈ [0,1] is formally defined as  

𝛼(,) =
<𝐸( ∩ 𝐸)<

minA|𝐸(|, |𝐸)|B
, (2) 

where 𝐸( represents the set of input data that leads to output 
error by ML model 𝑚( . On the other hand, the input 
diversity is represented by the conjunction of errors that is 
the probability that an input data causes an error 
conditioned by the error with another input data. The metric 
characterizes the diversity of input data in terms of 
inference errors by the same ML model. The conjunction 
of errors 𝛽(,*|, ∈ [0,1]  for ML model 𝑚(  is formally 
defined as the conditional probability 

𝛽(,*|, = Pr[𝑥* ∈ 𝐸(|	𝑥, ∈ 𝐸(], (3) 

where  𝑥* and	𝑥, are input data from different data sources 
(e.g., different sensors). Using the two diversity metrics, 
the reliability of DMDI system can be formulated as 
follows. 

𝑅","(𝑚!, 𝑚"; 𝑥!, 𝑥") 

= 1 − G𝛽!,"|! ∙ 𝛼!," + I1 − 𝛽!,"|!J ∙
-!	./#,!∙-#	
(!.-#	)

K ∙ 𝑝!,  
(4) 

where 𝑝( represents the error probability of ML models 𝑚( 
with input 𝑥! (i.e., Pr[𝑥! ∈ 𝐸(]). 

While the existing study uses the diversity metrics to 
formulate the reliability of three-version ML architectures 
[3], we find that several alternative parameterizations for 
the reliability models are also possible. In the following, we 
propose five variants of reliability models for TMSI, SMTI, 
and TMTI systems.  

1) Reliability of TMSI 
Assuming that a TMSI system fails when more than two 

outputs are in error, the reliability of TMSI system using 
three ML models 𝑚!, 𝑚" and 𝑚# is represented by 

𝑅#,!(𝑚!, 𝑚", 𝑚#; 𝑥!) 
= 1 − (𝛼!,"𝑝! + 𝛼!,#𝑝! + 𝛼",#𝑝" − 2𝛼!,"𝛼!,#𝑝!). 

(5) 

Variants of TMSI model are obtained with respect to 
the last term representing the probability of triple errors 
under the conditional independence assumption. The term 
𝛼!,"𝛼!,#𝑝! can be replaced with other combinations, such 
as  𝛼!,"𝛼",#𝑝!  and 𝛼!,#𝛼",#𝑝! . Moreover, the arithmetic 
mean and the geometric mean of 𝛼!,"𝛼!,#𝑝!, 𝛼!,"𝛼",#𝑝!, and 
𝛼!,#𝛼",#𝑝!  can also give the estimates of triple error 
probability.  

2) Reliability of SMTI 
Assuming that an SMTI system also fails when more 

than two outputs are errors, the reliability of SMTI system 
using three inputs 𝑥!, 𝑥" and 𝑥# is given by 

𝑅!,#(𝑚!; 𝑥!, 𝑥", 𝑥#) = 1 − (𝛽!,"|!𝑝! + 𝛽!,#|!𝑝! + 
𝛽!,#|"𝑝"′ − 2𝛽!,"|!𝛽!,#|!𝑝!),  

(6) 

where 𝑝"′ represents the error probability of ML models 
𝑚! with input 𝑥( (i.e., Pr[𝑥( ∈ 𝐸!]). 

Similar to TMSI, we can consider variants of SMTI 
model with respect to the last term representing the 
probability of triple errors under the conditional 
independence assumption. In place of the term 
𝛽!,"|!𝛽!,#|!𝑝!, we can choose other combinations, such as 
𝛽!,"|!𝛽!,#|"𝑝! , 𝛽!,#|!𝛽!,#|"𝑝! , the arithmetic and the 
geometric mean of 𝛽!,"|!𝛽!,#|!𝑝! , 𝛽!,"|!𝛽!,#|"𝑝!  and 
𝛽!,#|!𝛽!,#|"𝑝! for representing the triple error probability.  

3) Reliability of TMTI 
Assuming that a TMTI system fails when at least two 

modules output errors, the reliability of TMTI system using 
three ML models 𝑚!, 𝑚"  and 𝑚#  and three inputs 𝑥!, 𝑥" 
and 𝑥# is given by 

𝑅#,#(𝑚!, 𝑚", 𝑚#; 𝑥!, 𝑥", 𝑥#) = 1 − 
[𝑝","(𝑚!, 𝑚"; 𝑥1, 𝑥2) + 𝑝","(𝑚!, 𝑚#; 𝑥1, 𝑥3) +
𝑝","(𝑚", 𝑚#; 𝑥2, 𝑥3) − 2𝑝","(𝑚!, 𝑚"; 𝑥1, 𝑥2) ∙
𝑝","(𝑚!, 𝑚#; 𝑥1, 𝑥3)/𝑝!],  

(7) 

where 𝑝","I𝑚$, 𝑚&; 𝑥3, 𝑥,J  is the complement of DMDI 
reliability 1 − 𝑅","(𝑚!, 𝑚#; 𝑥!, 𝑥#) [3]. We can consider 



variants of TMTI model with respect to the last term 
representing the probability of triple errors. The term 
𝑝","(𝑚!, 𝑚"; 𝑥!, 𝑥") ∙ 𝑝","(𝑚!, 𝑚#; 𝑥!, 𝑥#)/𝑝!  can be 
replaced with combinations, such as  𝑝","(𝑚!, 𝑚"; 𝑥!, 𝑥") ∙
𝑝","(𝑚", 𝑚#; 𝑥", 𝑥#)/𝑝!  and 𝑝","(𝑚!, 𝑚#; 𝑥!, 𝑥#) ∙
𝑝","(𝑚", 𝑚#; 𝑥", 𝑥#)/𝑝!. Furthermore, the arithmetic mean 
and the geometric mean of these three terms can also give 
the estimates of triple error probability.  

IV. RESEARCH QUESTIONS 
As reviewed in the previous section, the reliability of N-

version ML system architectures is theoretically 
investigated in relation to model diversity and input 
diversity. However, it has not been discussed how diversity 
metrics estimated from the empirical observations are 
effective for reliability prediction. In addition, it is also a 
question of which variant of the reliability model is the 
most suitable for predicting the reliability of three-version 
systems. Aiming to answer these questions, we conduct 
experiments on traffic sign recognition tasks by using deep 
neural networks for classifying various traffic signs from 
different countries. We empirically evaluate the reliability 
of three-version traffic sign classifier architectures and 
compare the results with the predicted reliability which is 
based on estimated diversity parameter values. In our 
empirical study, we consider the following research 
questions. 

RQ1: Does the implementation of a three-version system 
architecture effectively enhance reliability? 

RQ2: How can the reliability models using diversity 
parameters estimate well the reliability of traffic sign 
classifier architectures?  

RQ3: How does the variant of the reliability models for 
three-version ML systems affect the reliability prediction 
performance?  

RQ4: How many samples are required to obtain good 
estimates of the diversity parameter values? 

RQ5: How does the different number of samples affect the 
sampling process and reliability predictions?  

To address RQ1, we evaluate the reliability of three-
version traffic sign classification systems using five 
different traffic sign datasets. We compare the reliability of 
the TMTI architecture with that of a single model 
employing a single input and observe the reliability 
improvement. To answer RQ2, we estimate the diversity 
parameters based on the outputs of three-version traffic 
sign classification systems. The estimated diversity 
parameters are used to derive the predicted reliability. We 
then compare the predicted reliability with the observed 
reliability to compute the prediction residuals. To answer 
RQ3, we use five variants of the reliability models for each 
three-version architecture and show their impacts on the 
prediction performance. For RQ4, we track the variances of 
diversity parameter values over the number of samples and 
analyze their trends. For RQ5, we conduct experiments 
with random sampling by varying the number of test 
samples and observe the changes in parameter estimations 
and reliability predictions. 

V. EXPERIMENT CONFIGURATION 

A. Classification Models 
We adopt LeNet [11], AlexNet [12], and ResNet50 [13] 

for ML models for three-version traffic sign classification 
systems. They are well-known deep neural networks for 
image recognition tasks. Three networks are implemented 
on the TensorFlow platform and trained with traffic sign 
datasets (explained in the next subsection). We choose 
these models because their architectures are developed 
independently, and their performance is relatively balanced. 
Fig. 2 shows the inaccuracies (the ratio of classification 
errors) of eight neural networks trained with the Chinese 
Traffic Sign Dataset. We observe that the three models are 
equally competitive. Since the primary objective of this 
study is to investigate the impact of diversity parameter 
estimations on the system reliability instead of exploring 
the best combinations achieving the highest accuracy, we 
focus on the experiments with these three models. 

 
Fig. 2. Model inaccuracies for CTSD: LeNet, AlexNet, ResNet50, 
ResNet18, ResNet101, VGG16 [35], Xception [36], and EfficientNet [37]. 

B. Data Diversification 
We use image transformations to generate the 

diversified input data. In real-world safety-critical 
scenarios such as autonomous driving, the sensors can 
receive traffic sign images with different resolutions, from 
different angles, or at different time points. We mimic such 
different versions of data by adding noise and rotating the 
original images. Fig. 3 shows the inaccuracies (the ratio of 
classification errors) of seven different inputs tested with 
LeNet in the Chinese Traffic Sign Dataset. The type of 
noise being added is Gaussian noise and the rotated images 
are generated by rotating the original images 
counterclockwise. We can see that when the variance of the 
noise is set to 0.01"  and the rotation degree is 5, the 
inaccuracy closely resembles the original inaccuracy. 
Hence, we select noise 0.01" and rotate 5° input data. Fig. 
4 shows the samples of diversified data, 	𝑥!  is the 
original,	𝑥" is noise-added and 	𝑥# is rotated image data. 

 
Fig. 3. Input inaccuracies for CTSD. 



   
	𝑥! 	𝑥" 	𝑥# 

Fig. 4. Samples of three input data. 

C. Datasets 
We choose five different traffic sign datasets in the 

following experiment: the Chinese Traffic Sign Dataset 
(CTSD) [22], the German Traffic Sign Recognition 
Benchmark (GTSRB) [23], Traffic Sign Classification 
Dataset (TSCD) [24], Turkey Traffic Sign (TTS) [25] and 
Arabic Traffic Signs (ATS) [26]. LeNet, AlexNet, and 
ResNet50 are trained on CTSD, GTSRB, TSCD, TTS, and 
ATS with 4170, 34799, 58511, 11952, and 46200 training 
samples, respectively. The models are trained with 128 
batch sizes and 20 epochs on all the datasets. Fig. 5 shows 
the convergence of the test accuracies of the three models 
for CTSD and GTSRB in 20 epochs.  

 
Fig. 5. The convergence trends of test accuracies for CTSD and GTSRB. 

 
Fig. 6. A three-version system by TMTI architecture. 

D. Three-version System Configuration 
Fig. 6 shows an example configuration of a three-

version system by TMTI architecture. We take the original, 
noise-added, rotated image data as inputs and feed them to 
three deep neural networks LeNet, AlexNet, and ResNet50. 
When recognizing the traffic sign like ’30(km/h)’, even 
though one of the ML models output errors like ‘50(km/h)’, 
a voting decision from diversified prediction results can 
correct the error and avoid an undesirable result. The voting 
decision is based on the simple majority voting to be 
consistent with the model assumption in [3]. 

E. Evaluation Metric 
The reliability of a three-version system is evaluated 

using test samples of traffic sign datasets. We measure the 
reliability by the ratio of correct outputs over the test 
samples, which we call the observed reliability. On the 
other hand, we can predict the reliability by the reliability 
models and the proposed variants in Section III using 
estimated values of diversity parameters. The validity of 
the reliability models can be evaluated by the prediction 
residual 𝑒  which is the difference between the observed 
reliability 𝑅45367869 and the predicted reliability 𝑅:769$;<69.  

𝑒 = 𝑅=>*?@A?B − 𝑅-@?B(C,?B . (8) 

VI. RESULTS 
In this section, we denote the trained LeNet, AlexNet, 

and ResNet50 as 𝑚D, 𝑚E, and 𝑚F , respectively; original 
data, noised data, and rotated data as input 𝑥4, 𝑥G, and 𝑥7, 
respectively. First, we evaluate the accuracy of a single 
model with single input systems.  The accuracy is 
calculated by the ratio of the number of misclassified 
samples to the number of total test samples. The numbers 
of test samples used for evaluations are 1994, 12630, 14628, 
5313, and 9240, for CTSD, GTSRB, TSCD, TTS, and ATS, 
respectively. All the results are shown in TABLE I. For 
example, 𝑅!,!(𝑚H , 𝑥=)  represents the accuracy of LeNet 
with original data. We label the three highest accuracies in 
each dataset as bold. We can observe that the overall 
accuracy for TSCD is the highest and the accuracy for 
GTSRB is the lowest in general. While the accuracies are 

   

  

Fig. 7. TMTI reliability comparison. 



generally balanced among different single-model systems, 
the accuracies for the ATS data set are relatively 
unbalanced which may impact the reliability of three-
version architectures. 
TABLE I. RELIABILITY OF SINGLE MODEL WITH SINGLE INPUT SYSTEM 

 CTSD GTSRB TSCD TTS ATS 
𝑅!,!(𝑚%, 𝑥&) 0.9579 0.9199 0.9709 0.9691 0.9837 
𝑅!,!(𝑚', 𝑥&) 0.9338 0.9349 0.9947 0.9872 0.909 

𝑅!,!(𝑚(, 𝑥&) 0.9448 0.9204 0.9900 0.9381 0.9962 
𝑅!,!(𝑚%, 𝑥)) 0.9549 0.914 0.9667 0.955 0.9712 
𝑅!,!(𝑚', 𝑥)) 0.9333 0.9263 0.9939 0.9864 0.9064 
𝑅!,!(𝑚(, 𝑥)) 0.9423 0.9176 0.9895 0.9324 0.9960 
𝑅!,!(𝑚%, 𝑥*) 0.9478 0.9074 0.9508 0.9644 0.9188 
𝑅!,!(𝑚', 𝑥*) 0.9047 0.9207 0.9934 0.9814 0.8811 
𝑅!,!(𝑚(, 𝑥*) 0.9117 0.8998 0.9852 0.9168 0.9577 

We measure the reliability of single-model with single-
input systems by the ratio of correct outputs over the test 
samples, which corresponds to the accuracy of individual 
classifiers shown in Table I. We use the reliability in Table 
I as the baseline to compare with the reliability of TMTI 
architecture. For TMTI architecture, there are 6 different 
configurations where we select 3 different inputs for 3 
different ML models. The results are shown in Fig. 7. The 
six green bars (also labeled as R33()) in each dataset present 
the reliability of TMTI architectures. For example, 
𝑅33(𝑚HIJ , 𝑥=@K) represents the reliability of three-version 
system where LeNet with original input, AlexNet with 
rotated input and ResNet50 with noised input. The result 
indicates that the reliability of TMTI architectures 
outperforms all other single models in the CTSD dataset, 
but certain single models can achieve higher reliability in 
GTSRB, TSCD, TTS and ATS datasets. To provide a 
comprehensive ranking of the architectures, we calculate 
the sum of the ranks in every dataset as a score. The result 
reveals that the scores of six TMTI architectures are 15, 17, 

21, 23, 31, 34, following (𝑚I, 𝑥=) with a score of 36 and 
(𝑚J , 𝑥=) with a score of 44, indicating that TMTI is the 
superior option over any single-model systems. 

Observation 1. Three-version ML system architectures, 
especially the TMTI architecture, have the potential to 
efficiently improve system reliability compared to single 
models. 

While TMTI is a favorable option for reliability 
improvement, the reliability enhancement clearly depends 
on the architecture choice. Therefore, the prediction of 
system reliability is necessary for selecting an effective 
architecture in practice. In the following sections, we will 
analyze the empirical estimates of diversity parameters for 
predicting the reliability of two-version and three-version 
ML systems. 

A. Two-version Architecture 
First, we evaluate the reliability of DMDI systems 

which can also be a component of TMTI systems. As 
presented in Section III, the reliability of DMDI systems is 
associated with model diversity and input diversity. 
Therefore, diversity parameter estimations impact the 
reliability prediction of DMDI systems as well. There are 
three different combinations of ML models by choosing 
two from LeNet, AlexNet, and ResNet50, and three 
different input data choices by choosing two from original, 
noised, rotated input data, resulting in 18 configurations in 
total, which are shown in TABLE II.  

TABLE II. DIFFERENT CONFIGURATIONS OF DMDI SYSTEMS 

1 (𝑚+, 𝑚,; 𝑥-, 𝑥.) 7 (𝑚+, 𝑚(; 𝑥-, 𝑥.) 13 (𝑚', 𝑚(; 𝑥-, 𝑥.)  
2 (𝑚+, 𝑚,; 𝑥-, 𝑥*) 8 (𝑚+, 𝑚(; 𝑥-, 𝑥*) 14 (𝑚', 𝑚(; 𝑥-, 𝑥*)  
3 (𝑚+, 𝑚,; 𝑥), 𝑥&) 9 (𝑚+, 𝑚(; 𝑥), 𝑥&) 15 (𝑚', 𝑚(; 𝑥), 𝑥&)  
4 (𝑚+, 𝑚,; 𝑥), 𝑥*) 10 (𝑚+, 𝑚(; 𝑥), 𝑥*) 16 (𝑚', 𝑚(; 𝑥), 𝑥*)  
5 (𝑚+, 𝑚,; 𝑥* , 𝑥&) 11 (𝑚+, 𝑚(; 𝑥* , 𝑥&) 17 (𝑚', 𝑚(; 𝑥* , 𝑥&)  
6 (𝑚+, 𝑚,; 𝑥* , 𝑥)) 12 (𝑚+, 𝑚(; 𝑥* , 𝑥)) 18 (𝑚', 𝑚(; 𝑥* , 𝑥.)  

 

Fig. 8. DMDI residual between observed results and model results. 
 

TABLE ⅡI. PARAMETERS FOR DIFFERENT DATASETS 

CTSD  GTSRB  TSCD  TTS  ATS 
𝛼%,, 0.4286  𝛼%,, 0.4927  𝛼%,, 0.3117  𝛼%,, 0.4853  𝛼%,, 0.2318 
𝛼%,/ 0.1905  𝛼%,/ 0.5114  𝛼%,/ 0.2857  𝛼%,/ 0.3958  𝛼%,/ 0.3429 
𝛼',/ 0.2  𝛼',/ 0.5328  𝛼',/ 0.1299  𝛼',/ 0.5  𝛼',/ 0.4857 
𝛽%,.|- 0.9405  𝛽',.|- 0.9708  𝛽',.|- 0.7922  𝛽',.|- 0.9118  𝛽(,.|- 0.9714 
𝛽%,1|- 0.6731  𝛽',1|- 0.7313  𝛽',1|- 0.5729  𝛽',1|- 0.6078  𝛽(,1|- 0.0665 
𝛽%,1|. 0.7778  𝛽',1|. 0.8323  𝛽',1|. 0.75  𝛽',1|. 0.8824  𝛽(,1|. 0.3333 
𝛽(,1|. 0.7778  𝛽(,1|. 0.8769  𝛽(,1|. 0.8333  𝛽%,1|. 0.8824  𝛽%,1|. 0.3333 

 



We estimate the diversity metrics from all the test 
samples. For two-version ML systems, there are two 
diversity metrics to measure, i.e., 𝛼!," and 𝛽!,"|!. The value 
of 𝛼!,"  is computed by the ratio of the number of test 
samples that cause double errors of two ML models 𝑚! and 
𝑚". On the other hand, the value of 𝛽!,"|! is computed by 
the probability that input data causes an error conditioned 
by the error with the other input data. We apply the 
estimated values to expression (4) to predict reliability. The 
predicted reliability is then compared with the observed 
reliability. Fig. 8 shows the prediction residual for every 
configuration. We use green, yellow, and blue to represent 
combinations (𝑚D, 𝑚E),  (𝑚D, 𝑚F),  and (𝑚E, 𝑚F) , 
respectively. As we can see from Fig. 8, the residual of 
TSCD is generally smaller than the others, while that of 
GTSRB is larger than the others. The result implies that the 
residual of DMDI reliability prediction is related to the 
accuracies of individual ML models as observed in TABLE 
I. For CTSD, GTSRB, TSCD and TTS datasets where the 
accuracies are generally balanced among different single-
model systems, higher overall model accuracies lead to 

lower residuals of DMDI reliability predictions. For the 
ATS data set, the residuals of the combination 𝑚D, 𝑚F 
(yellow ones) are generally better than 𝑚D, 𝑚E and 𝑚E, 𝑚F  
(green and blue ones) since the accuracy of ML models 
𝑚D, 𝑚F  is much higher than that of 𝑚E . Overall, we 
observe that the absolute values of the residuals of DMDI 
reliability predictions are less than 0.017 across all datasets.  

B. Three-version Architecture 
Next, we evaluate the reliability of three-version 

architectures. We calculate the estimated diversity 
parameter values, which are shown in TABLE III. There 
are three different 𝛼 values and eighteen different 𝛽 values 
depending on the combinations of models and inputs. 
However, in TABLE III, we only show the 𝛽 values used 
for reliability prediction. We compute the predicted 
reliability of TMSI, SMTI, and TMTI systems by applying 
the estimated diversity parameter values to the three-
version reliability models. We also consider the baseline 
reliability model for three-version systems [9], which 
corresponds to expression (1). As the baseline model 
assumes that three models have the same reliability, we 

 
Fig. 9. Residual between observed results and model results for TMSI. 

 

 
Fig. 10. Residual between observed results and model results for SMTI. 

 

 
Fig. 11. Residual between observed results and model results for TMTI. 
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estimate the error probability p by the average error 
probabilities of three components. Similarly, the similarity 
percentage 𝛼  is estimated by the average of three 
intersections of errors.  

1) TMSI 
TMSI architecture uses three ML models and single 

input. We apply ML models 𝑚D, 𝑚E, 𝑚F and choose one 
input from 𝑥4, 𝑥G, 𝑥7 . Hence there are three different 
situations (𝑚H , 𝑚I, 𝑚J; 𝑥4) , (𝑚H , 𝑚I, 𝑚J; 𝑥G)  and 
(𝑚H , 𝑚I, 𝑚J; 𝑥7). As mentioned in Section III.C, we can 
compute five variants of TMSI reliability prediction by 
different representations of triple error probability 𝑡(:  

𝑡! = 𝛼!," ∙ 𝛼!,# ∙ 𝑝!, 
𝑡" = 𝛼!," ∙ 𝛼",# ∙ 𝑝!, 
𝑡# = 𝛼!,# ∙ 𝛼",# ∙ 𝑝!, 

𝑡L =
𝑡! + 𝑡" + 𝑡#

3 , 

𝑡M = Q𝑡!𝑡"𝑡#% . 

(9) 

We compute the residuals based on five predictions and 
the baseline, as shown in Fig. 9. For CTSD, GTSRB, TSCD 
and TTS datasets where the accuracies are generally 
balanced among different single-model systems, the 
residual of five variant predictions in TSCD is the smallest, 
then TTS, CTSD, and GTSRB is the largest. 

 TABLE I shows that the accuracy of TSCD is generally 
higher than the others, while GTSRB is the lowest among 
others. It illustrates that higher overall model accuracies 
lead to lower residuals of TMSI reliability predictions in 
datasets with balanced accuracy, which is consistent with 
our findings in DMDI. Besides, we find that the residuals 
of five predictions for each dataset are similar, and 𝑡! tends 
to provide better predictions. For TMSI architecture, the 
prediction residuals are less than 0.017 across all datasets. 
In addition, we find that the residual of a baseline is very 
large compared with the reliability predictions by three-
version reliability models using diversity parameters. The 
reliability model for TMSI reduces the prediction residuals 
by 24.77%-100% from the prediction by the baseline model. 

2) SMTI 
SMTI architecture uses three inputs and a single ML 

model. We use inputs 𝑥4, 𝑥G, 𝑥7 and choose one ML model 
from 𝑚H , 𝑚I, 𝑚J. Hence there are three different situations 
(𝑚H; 𝑥4, 𝑥G, 𝑥7), (𝑚I; 𝑥4, 𝑥G, 𝑥7) and (𝑚J; 𝑥4, 𝑥G, 𝑥7). Five 
SMTI reliability predictions mentioned in Section III.C are 
calculated by different representations of triple error 
probability 𝑡(: 

𝑡! = 𝛽!,"|! ∙ 𝛽!,#|! ∙ 𝑝!, 
𝑡" = 𝛽!,"|! ∙ 𝛽!,#|" ∙ 𝑝!, 
𝑡# = 𝛽!,#|! ∙ 𝛽!,#|" ∙ 𝑝!, 

𝑡L =
𝑡! + 𝑡" + 𝑡#

3 , 

𝑡M = Q𝑡!𝑡"𝑡#% . 

(10) 

Then we calculate the residuals based on the above 
variants of SMTI models and the baseline. The result is 
shown in Fig. 10. The prediction residuals by five variants 
of the SMTI models in TSCD are still the smallest among 
other data sets. Compared with TSCD, other datasets have 
high residuals. Besides, we find that the residuals of five 
predictions for each dataset are similar, and 𝑡L  tends to 
provide a better prediction. For SMTI architecture, the 
absolute values of the prediction residuals are less than 0.07 
across five datasets. In addition, we find the residual of the 
baseline is generally similar to five predictions.  

3) TMTI 
TMTI architecture combines three inputs and three ML 

models. We use inputs 𝑥4, 𝑥G, 𝑥7 and models 𝑚H , 𝑚I, 𝑚J . 
Similar to SMTI, we can compute five variants of TMTI 
reliability prediction mentioned in Section III.C by 
different representations of triple error probability 𝑡(: 

𝑡! =
𝑝","(𝑚!, 𝑚"; 𝑥!, 𝑥") ∙ 𝑝","(𝑚!, 𝑚#; 𝑥!, 𝑥#)

𝑝!
, 

𝑡" =
𝑝","(𝑚!, 𝑚"; 𝑥!, 𝑥") ∙ 𝑝","(𝑚", 𝑚#; 𝑥", 𝑥#)

𝑝!
, 

𝑡# =
𝑝","(𝑚!, 𝑚#; 𝑥!, 𝑥#) ∙ 𝑝","(𝑚", 𝑚#; 𝑥", 𝑥#)

𝑝!
, 

𝑡L =
𝑡! + 𝑡" + 𝑡#

3 , 

𝑡M = Q𝑡!𝑡"𝑡#% . 

(11) 

We evaluate the residuals based on the above variants 
of TMTI models and the baseline, which are shown in Fig. 
11. Similar to TMSI and SMTI, the prediction residuals by 
five variants of TMTI models in TSCD are still the smallest 
among other data sets. Besides, we observe that the 
residuals of five predictions for each dataset are almost the 
same and cannot figure out which variant is better. For 
TMTI architecture, the absolute values of the prediction 
residuals are less than 0.012 across five datasets. In 
addition, we find that the residual of the baseline is the 
largest compared with five variant predictions for each 
dataset. The reliability model for TMTI reduces the 
prediction residual by 47.3%-92.75% from the baseline 
prediction. 

 

 
Fig. 12. The trends of variances of estimated diversity parameters over the number of samples. 



In summary, the evaluation results for three different 
architectures give the following observations that 
correspond to the answers to RQ2 and RQ3. 

Observation 2. The prediction residuals are mostly less 
than 0.017 across five data sets in most architectures except 
the SMTI architecture. 

Observation 3. The residuals of five variants of TMSI, 
SMTI, and TMTI reliability predictions are equally 
effective. No variant shows evident superiority over the 
others. 

C. Trends of Diversity Parameter Estimations 
To answer RQ4, we further investigate how diversity 

parameters change over the number of samples observed. 
We compute the variances of the estimated diversity 
parameters over the course of sample observations. The 
trends of variances of the estimated diversity parameter 
values are plotted in Fig. 12. For all datasets, we can see 
that the variances tend to decrease drastically after a certain 
number of samples, indicating that the estimated values 
tend to converge after receiving a sufficient number of 
samples. Fig. 12 also indicates the number of samples 
necessary to reach a threshold of variance. For instance, if 
we set the threshold to 0.06, at least 160 samples are 
necessary to obtain all the diversity estimates satisfying the 
criterion in CTSD. For GTRSB, about 1500 samples are 
necessary to reach the threshold. The results imply that we 
can obtain fairly good estimates of diversity parameters 
with early observed samples for predicting and comparing 
the reliabilities of N-version system architectures. 

Observation 4. For some data sets, we can obtain fairly 
good estimates of diversity parameters by a relatively small 
number of samples (less than a few thousand samples). In 
such cases, we may predict the reliability of three-version 
systems by measuring the diversities from early samples. 

D. Impact of the Number of Samples 
To further analyze the impact of sample size, we 

conduct experiments with random sampling from the test 
data set. We use GTSRB and TSCD for this experiment as 
they contain a relatively large number of samples. We fix 
the sample size 𝑛	to 500, 750, and 1000, and randomly 
choose 𝑛  samples from the test data set to predict the 
reliability. The average and the 95% confidence intervals 
of the predicted reliabilities of TMTI (R33(t1)) over ten 
trials are shown in TABLE IV. As the sample size increase, 
the prediction performance generally improves as its 
residual decreases and the confidence interval narrows.  

TABLE IV. RELIABILITY PREDICTIONS BY RANDOM SAMPLING 

Data set Sample size Average and CI Residual 
GTSRB 500 0.9288 [0.9276, 0.9300] 0.0098 
 750 0.9291 [0.9283, 0.9289] 0.0082 
 1000 0.9361 [0.9356, 0.9366] 0.0076 
TSCD 500 0.9961 [0.9959, 0.9963] 0.0011 
 750 0.9956 [0.9954, 0.9959] 0.0003 
 1000 0.9954 [0.9952, 0.9955] 0.0002 

 
Observation 5. The number of samples impacts the 
sampling process and the reliability prediction. A larger 
sample size generally provides a better prediction.  

E. Discussion 
Suggestions for reliable ML system design. The 
observations from our empirical study give some guidance 
for system designers and researchers who are considering 
N-version ML systems for designing reliable ML systems. 
While the estimation of reliability based on the accuracy 
over test samples may not perfectly reflect reliability in 
real-world use, it provides valuable insights into the 
system's performance and capabilities. From observation 1, 
we recommend implementing a three-version architecture 
since three-version architectures especially the TMTI 
architecture are efficient in improving the system reliability. 
From observations 2 and 3, we can suggest using the 
reliability models to choose the most reliable three-version 
architecture based on the observed diversities. It is 
advisable to choose SMTI in terms of cost. Although the 
residuals for SMTI are slightly worse than others, they are 
still better than the predictions by the conventional model. 
We can improve the reliability without training and 
deploying diverse models when deploying SMTI unless it 
has a significant disadvantage in the predicted reliability. 
From observations 4 and 5, collecting as many samples as 
possible is recommended to make accurate reliability 
predictions. However, for the architecture comparison 
purpose, a relatively small number of samples may be 
satisfactory for obtaining reasonable estimates of diversity 
parameters. In the early stage of system design or in system 
testing with real samples, it is worth evaluating the 
reliabilities with available samples to choose a suitable 
architecture. 

Threats and limitations. In this study, we focus on traffic 
sign image recognition tasks to evaluate the reliability of 
three-version ML systems. The observations are mostly 
consistent across the five data sets we adopted. However, 
for comparison purposes, we fixed three ML models 
(LeNet, AlexNet, and ResNet50) and the diversification 
methods for input data (original, noise-added, and rotated). 
Different ML models and other data diversification 
methods may impact the results. Other empirical studies 
using various models [4][32] and data diversification 
methods [20] can complement our observations. Other 
tasks like object detection which share similarities with 
classification tasks could potentially benefit from adapting 
N-version ML system architectures. Some of our findings 
can be transferable to other ML tasks with neural networks. 
Nonetheless, we recognize that decision schemes and 
voting rules for tasks like regression may require further 
investigation. The presented study is limited to three-
version systems using majority voting which is also the 
limitation of the theoretical analysis of N-version ML 
system reliability [3]. It is an important future work to 
evaluate the reliability of N-version systems with more 
versions and other voting schemes such as weighted voting 
both theoretically and experimentally. In this study, we did 
not consider other system design factors, such as 
performance, resource consumption, energy, and cost that 
also need to be considered together with reliability [5]. 
Since the associated costs and performance overhead 
depend on the chosen architecture, it is an important design 
challenge to find the best option under the given constraints 
that are considered in our future work. 



VII. CONCLUSION 
In this paper, we investigated the reliability of N-

version ML systems and the associated diversity metrics 
estimated from the empirical data. We focused on traffic 
sign recognition tasks and conduct experiments on five 
different traffic sign datasets. We demonstrated the 
superiority of three-version ML system architectures, 
especially TMTI architecture, in terms of reliability 
improvement. However, it is important to note that TMTI 
does not consistently outperform other architectures across 
all five datasets. Therefore, we used reliability prediction 
models for three-version ML systems to compare the 
architecture reliabilities. The experiment results showed 
that the prediction residuals are mostly less than 0.017 in 
most architectures except SMTI architecture. While we 
considered five variants of reliability prediction models, it 
was shown that the five variants are almost equally 
effective. Moreover, through the trend analysis of 
estimated diversity parameter values, we observe that fairly 
good estimates can be obtained by a relatively small 
number of samples. The result implies that the diversity 
parameter estimations with early samples are useful for 
predicting the three-version ML system reliability and 
choosing the effective architecture. In future work, we will 
explore other ML tasks and the cost and performance of N-
version ML systems. 
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