
A Queueing Analysis of Multi-model Multi-input
Machine Learning Systems

Yuta Makino
Department of Policy and Planning Sciences

University of Tsukuba
Ibaraki, Japan

s1920505@u.tsukuba.ac.jp

Tuan Phung-Duc
Department of Policy and Planning Sciences

University of Tsukuba
Ibaraki, Japan

tuan@sk.tsukuba.ac.jp

Fumio Machida
Department of Computer Science

University of Tsukuba
Ibaraki, Japan

machida@cs.tsukuba.ac.jp

Abstract—A multi-model multi-input machine learning system
(MLS) is an architectural approach to improve the reliability of
the MLS output by using multiple models and multiple sensor
inputs. While the errors in MLS output can be reduced by
redundancy with diversity, the performance overhead/gain caused
by the employed architecture may also be concerned in safety-
critical applications such as a self-driving car. In this paper, we
proposed queueing models for analyzing a multi-model multi-
input MLS performance in two architectures, namely a parallel
MLS and a shared MLS. The parallel MLS architecture runs two
different machine learning models in parallel, while the shared
MLS architecture runs a single machine learning model but
uses two different sensor inputs. We model the behavior of the
parallel MLS by a quasi-birth-death process. On the other hand,
we model dynamics of the shared MLS as a continuous-time
Markov chain of GI/M/1 type. The numerical experiments on the
proposed models show that the parallel MLS generally achieves
better throughput performance than the shared MLS under the
same parameter settings. We also show that the throughput
performance of the shared MLS can be improved when the input
data arrival rates are sufficiently high.

Index Terms—machine learning, throughput, performance,
queueing model, redundant architecture

I. INTRODUCTION

Dependability of machine learning systems (MLSs) is be-
coming a fundamental challenge in safety-critical systems
such as self-driving cars and autonomous robots. Prediction
accuracies of machine learning models have been consider-
ably improved recently due to advances in machine learning
algorithms and computing systems. However, outputs from
machine learning models are still far from perfect in use cases
because the input data encountered in the operation is not the
same as the samples in the training data set. The robustness
of machine learning models has been extensively studied for
protecting the model from adversarial examples [1], [2], [6].
Numerous testing methods for machine learning models are
presented recently [7]–[9]. Validating the input data during
the operation can also help reduce errors causing corner cases
[10]. Nevertheless, none of the existing methods solely provide
a complete solution to remove MLS output errors. Since it is
not realistic to assume that MLS never outputs errors, we still
need diverse efforts to improve the reliability of MLS outputs.

A multi-model multi-input MLS considered in this paper
is an architecture approach to reduce error outputs by em-

ploying multi-version machine learning models and multiple
inputs to determine the final output. Similar architectures have
been presented in recent studies [3], [12]. The reliability
gain achieved by N-version machine learning architectures
are studied analytically [3], [13] as well as experimentally
[11], [12], [14]. Although the existing studies on N-version
architecture mainly focus on reliability improvement, none
of the work addresses the performance overhead that must
be concerned with real-world applications. For example, the
delay of image recognition outputs in a self-driving car may
cause a catastrophic consequence. If the system employs the
N-version architecture, the additional performance overhead
caused by multi-model or multi-input should be taken into
consideration.

In this paper, we propose queueing models for a multi-
model multi-input MLS. We consider two types of archi-
tectures, namely the parallel MLS and the shared MLS. In
the parallel MLS, machine learning models process the input
data from multiple data sources in parallel and determine the
final output by voting mechanism in a comparison unit. This
architecture is efficient when input data frequencies are high,
while it may consume a high amount of resource. On the other
hand, the shared MLS only uses a single machine learning
model which receives the data from different sources and
determines the final output by comparing the prediction results
for different sources. The method can improve the output
reliability by leveraging the input data diversity [3], while the
machine learning model can be the performance bottleneck
when data arrival frequencies are high. Both the architec-
tures have their advantages and disadvantages. The objective
of our study is to quantitatively analyze the performance
characteristics of two different architectures for N-version
machine learning systems. To this end, we focus on simple
two-version architectures in which the system can use at most
two different machine learning models and two data sources.
We model the parallel MLS as a quasi-birth-death process that
can incorporate different data arrival rates, different processing
rates, and a voting process. On the other hand, we show
that the performance of the shared MLS can be analyzed
using a continuous-time Markov chain of GI/M/1 type whose
stationary distribution can be derived algorithmically.

The rest of the paper is organized as follows. Section

Ⅱ explains the queueing models for a parallel MLS and a
shared MLS. Section Ⅲ details the analysis of the proposed
models. Section Ⅳ introduces the performance measures.
SectionⅤ shows the numerical examples. SectionⅥ discusses
the reliabilities of the multi-model multi-input MLSs. Finally,
Section Ⅶ concludes the paper.

II. QUEUEING MODEL

In this section, we describe in detail two queueing models
for the parallel MLS and the shared MLS, respectively. In
the following description, we refer to the input data from the
primary sensor as type 1 jobs and those from the secondary
sensor as type 2 jobs. Furthermore, a module refers to a
software which deploys a machine learning model.

A. Parallel MLS

In this section, we describe a queueing model for the parallel
MLS. Jobs of type 1 arrive at the system according to the
Poisson process with rate λ1. Upon arrival of a type 1 job, if
module 1 is free, the job is processed immediately, otherwise
it waits in the queue of module 1. Jobs of type 2 also arrive at
module 2 according to the Poisson process with rate λ2 and
are processed with the same manner. The processing times of
module 1 and module 2 follow the exponential distributions
with mean 1/µ1 and 1/µ2, respectively. The special feature
of our model is that upon service completion, the module
stops processing in cases: 1) there is not a completed job
in the other module, 2) the comparison unit is not idle yet.
When the processing of two jobs in the two modules are
completed and the comparison unit is idle, these two jobs are
forwarded to the comparison unit. The comparison completes
in an exponentially distributed time with mean 1/µ and after
that the comparison unit becomes free. The schematic of the
model is shown in Figure 1. For the sake of the analysis,
the maximum allowable amount of Type 2 jobs in the parallel
MLS is set to K > 0, but it should be large enough to represent
the actual system.

Fig. 1. The queueing model for the parallel MLS with two modules.

In order to analyze the above model, we set necessary
assumptions. We assume that the arrival intervals of jobs and
the processing times of modules and the comparison times are
independent of each other. The order of services is assumed to

be first-come, first-served. Next, we define the necessary ran-
dom variables for the analysis of this model. We define SP2 :=
{0, 1, ...,K}, SPstate := {0, 1},N0 := N ∪ {0}, S∗

P := SP2 ×
SPstate×SPstate×SPstate×N0. We define the number of jobs
of type 2 in the system by N2(t) ∈ SP2, the states of module
processing of type 1 and type 2 and comparison processing are
Nm1(t), Nm2(t), Nc1(t) ∈ SPstate; and the number of jobs of
type 1 in the system is N(t) ∈ N0. Note that for the state of
module 1, 2 and the comparison unit, 0 means the module is
free and 1 means the module is processing. Finally, we define
XP (t) := (N(t), N2(t), Nm1(t), Nm2(t), Nc1(t)). Since S∗

P

includes states that XP (t) cannot reach, we define SP as the
subset of S∗

P that unreachable states are removed. Based on
the above settings, it is easy to see that {XP (t); t ≥ 0} is a
Markov chain in the state space SP whose analysis will be
given in Section Ⅲ.

B. Shared MLS

In this section, we describe a queueing model for shared
MLS. Jobs of type 1 and 2 arrive at the system according to
Poisson processes with rate λ1 and λ2, respectively and we
do not distinguish the types of jobs. The arrival process of
arbitrary jobs (either type 1 or type 2) follow Poisson process
with rate λ1 + λ2. It should be noted that the type of the
arriving job is not known and the type of the job is only
probabilistically determined once it enters the service. Jobs
are serviced on a first-come, first-served (FCFS) discipline.
Service times of jobs of type 1 are exponentially distributed
with rate µ1, while those of type 2 are exponentially distributed
with rate µ2. Upon the service completion of a job, if there
exists a served job of the other type, both jobs are transferred
to the comparison unit in which an exponentially distributed
time with mean 1/µ is further needed. In case the comparison
unit is not idle, the two jobs wait at the module and the module
is stopped. Otherwise, the module looks for a non-processed
job of the other type from the head of the buffer one by one.
In this process, jobs of the same type will be deleted until a
job of the other type is possibly found. Once two jobs of the
two types are transferred to the comparison unit, the module
pickups one job in the head of the buffer to process. This
process is repeated. The probability that a job in the buffer
is a type 1 job is λ1

λ1+λ2
(:= λ̃1) and the probability that it is

a type 2 job is λ2

λ1+λ2
(:= λ̃2). A schematic of the model is

shown in Figure 2.

In order to analyze the above model, we set necessary
assumptions. We assume that the arrival intervals of various
jobs and the processing times of the module and compari-
son processes are independent of each other. The order of
services is assumed to be first-come, first-served. Next, we
define the necessary random variables for the analysis of this
model. We define Sstate1 := {0, 1, 2, 3, 4, 5, 6, 7}, Sstate2 :=
{0, 1},N0 := N ∪ {0}, S∗

S := Sstate1 × Sstate2 × N0. The
state of module processing in the system is Nm(t) ∈ Sstate1,
the state of comparison processing is Nc2(t) ∈ Sstate2, and
the number of jobs waiting in the buffer is L(t) ∈ N0. As

Fig. 2. The queueing model for the shared MLS with two types of jobs.

for the status of the module process, 0 means free state, 1
means that only type 1 jobs have been processed, 2 means
that only type 1 job is in processing, 3 means that type 1 job
has been processed and type 2 job is in processing, 4 is that
only type 2 jobs have been processed, 5 means that only type
2 job is in processing, 6 means that the job of type 2 has
been processed and the job of type 1 is in processing, and 7
means that both two types of jobs have been processed and
waiting for comparison processing. As for the status of the
comparison process, 0 means free and 1 means in process.
Finally, we define XS(t) := (L(t), Nm(t), Nc2(t)). Since S∗

S

includes states that XS(t) cannot reach, we define SS as the
subset of S∗

S that unreachable states are removed. It is easy
to see that {XS(t); t ≥ 0} is a Markov chain on the state
space SS . Based on the above settings, we analyze the model
in section Ⅲ.

III. QUEUEING ANALYSIS

In this section, we define the infinitesimal generators for the
two models described in section Ⅱ, and describe the analysis
of each model.

A. Parallel MLS

When we construct the transition matrix by separating the
change in the number of Type 1 jobs from the change in the
other states, we can represent the infinitesimal generator QP

(1), where O is a zero matrix of appropriate size.

QP =

LP
0 LP

1 LP
2 LP

3 LP
4 LP

5 ···

LP
0 B0 C0 O O O O · · ·

LP
1 A1 B1 C1 O O O · · ·

LP
2 O A2 B2 C2 O O · · ·

LP
3 O O A3 B2 C2 O · · ·

LP
4 O O O A3 B2 C2 · · ·
...

...
...

...
.

. (1)

LP
0 ,LP

1 ,LP
i (i ≥ 2) are the sets given as follows.

LP
0 :={(0, 0, 0, 0, 0)} ∪ · · · ∪ {(0,K, 0, 0, 0)} ∪ {(0, 1, 0, 1, 0)}

∪ · · · ∪ {(0,K, 0, 1, 0)},
LP
1 :={(1, 0, 0, 0, 0)} ∪ {(1, 0, 1, 0, 0)} ∪ · · · ∪ {(1,K, 1, 0, 0)} ∪ {(1, 1, 0, 1, 0)}

∪ · · · ∪ {(1,K, 0, 1, 0)} ∪ {(1, 1, 0, 0, 1)} ∪ · · · ∪ {(1,K, 0, 0, 1)}
∪ {(1, 1, 1, 1, 0)} ∪ · · · ∪ {(1,K, 1, 1, 0)} ∪ {(1, 2, 0, 1, 1)}
∪ · · · ∪ {(1,K, 0, 1, 1)},

LP
i :={(i, 0, 0, 0, 0)} ∪ {(i, 0, 1, 0, 0)} ∪ · · · ∪ {(i,K, 1, 0, 0)} ∪ {(i, 1, 0, 1, 0)}

∪ · · · ∪ {(i,K, 0, 1, 0)} ∪ {(i, 1, 0, 0, 1)} ∪ · · · ∪ {(i,K, 0, 0, 1)}
∪ {(i, 1, 1, 1, 0)} ∪ · · · ∪ {(i,K, 1, 1, 0)} ∪ {(i, 1, 1, 0, 1)} ∪ · · ·
∪ {(i,K, 1, 0, 1)} ∪ {(i, 2, 0, 1, 1)} ∪ · · · ∪ {(i,K, 0, 1, 1)} ∪ {(i, 2, 1, 1, 1)}
∪ · · · ∪ {(i,K, 1, 1, 1)}.

In LP
i , i corresponds to the number of type 1 jobs in the

system, the elements of LP
i are sorted in the increasing order

of N2(t) and the last three components are sorted in an
appropriate order convenient for computation. Block matrix
Bi (i ≥ 0) represents the state transition when the number
of type 1 jobs does not change, the block matrix Ci (i ≥ 0)
represents the state transition when the number of type 1 jobs
increases by one, and the block matrix Ai (i ≥ 1) represents
the state transition when the number of type 1 jobs decreases
by one. For the elements of each matrix, please refer to the
appendix.

Next, we compute the stationary distribution of (1). Because
{XP (t) ∈ SP | t ≥ 0} defined in section Ⅱ is a continuous-
time Markov chain, which can be seen as a quasi-birth-
death process [4]. We calculate the stationary distribution by
referring to the method shown in [4]. We define the stationary
distribution πP

i,j,k,m,l of XP (t) for (i, j, k,m, l) ∈ SP as
follows.

πP
i,j,k,m,l := lim

t→∞
P (N(t) = i,N2(t) = j,Nm1(t) = k

Nm2(t) = m,Nc1(t) = l).

In addition, we define πP
i as follows.

πP
i := (πP

i,j,k,m,l)(i,j,k,m,l)∈LP
i
.

πP
i that represents the stationary distribution when the

number of type 1 jobs in the system is fixed to i.

B. Shared MLS

When we construct the transition matrix by separating the
change in the number of jobs in buffer from the change in the
other states, we can represent the infinitesimal generator QS

(2), where O is a zero matrix of appropriate size.

QS =

LS
0 LS

1 LS
2 LS

3 LS
4 LS

5 ···

LS
0 B0 C0 O O O O · · ·

LS
1 B1 A1 A0 O O O · · ·

LS
2 B2 A2 A1 A0 O O · · ·

LS
3 B3 A3 A2 A1 A0 O · · ·

LS
4 B4 A4 A3 A2 A1 A0 · · ·

LS
5 B5 A5 A4 A3 A2 A1 · · ·
...

...
...

...
...

...
...

. . .

. (2)

LS
0 ,LS

i (i ≥ 1) are the sets given as follows.

LS
0 :={(0, 0, 0)} ∪ · · · ∪ {(0, 6, 0)} ∪ {(0, 0, 1)} ∪ · · · ∪ {(0, 7, 1)},

LS
i :={(i, 2, 0)} ∪ {(i, 3, 0)} ∪ {(i, 5, 0)} ∪ {(i, 6, 0)} ∪ {(i, 2, 1)} ∪ {(i, 3, 1)}

∪ {(i, 5, 1)} ∪ {(i, 6, 1)} ∪ {(i, 7, 1)}.

In LS
i , i corresponds to the number of jobs in buffer. The

block matrix B0, A1 represents the state transition when the
number of jobs in buffer does not change, the block matrix
C0, A0 represents the state transition when the number of
jobs in buffer increases by one, the block matrix Ai (i ≥ 2)
represents the state transition when the number of jobs in
buffer decreases by i − 1, and the block matrix Bi (i ≥ 1)
represents the state transition when the number of jobs in
buffer decreases by i. For the elements of each matrix, please
refer to the appendix.

Next, we compute the stationary distribution of (2). Because
{XS(t) ∈ SS | t ≥ 0} defined in section Ⅱ is a continuous-
time Markov chain of GI/M/1 type, we calculate the stationary
distribution by referring to the method shown in [5]. We define
the stationary distribution πS

i,j,k of XS(t) for (i, j, k) ∈ SS as
follows.

πS
i,j,k = lim

t→∞
P (L(t) = i,Nm(t) = j,Nc2(t) = k).

In addition, we define πS
i as follows.

πS
i := (πS

i,j,k)(i,j,k)∈LS
i
.

πS
i that represents the stationary distribution when the

number of jobs waiting in the buffer is fixed to i.

IV. PERFORMANCE MEASURES

The throughput of parallel MLS TP can be defined as
follows.

TP = πP
1 e

∗∗
P1 +

∞∑
i=2

πP
i e

∗∗
P2,

where e∗∗P1 is a column vector of size 5K+1 with all elements
in 2K +3 ∼ 3K +2 rows and 4K +3 ∼ 5K +1 rows being
1 and the other elements being 0, and e∗∗P2 is a column vector
of size 7K and with all elements in 2K + 3 ∼ 3K + 2 and
4K + 3 ∼ 7K rows being 1 and the other elements being 0.
For elements in e∗∗P1, e

∗∗
P2, 1 corresponds to the state that the

throughput is calculated.
The throughput of shared MLS TS can be defined as

follows.

TS = πS
0 e

∗
S0 +

∞∑
i=1

πS
i e

∗
S1,

where e∗S0, e
∗
S1 are column vectors given by

e∗S0 = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1)T ,

e∗S1 = (0, 0, 0, 0, 1, 1, 1, 1, 1)T .

For elements in e∗S0, e
∗
S1, 1 corresponds to the state that the

throughput is calculated.

V. NUMERICAL RESULTS

In this section, we present numerical results based on the
analysis presented in Sections Ⅱ and Ⅲ.

A. Parallel MLS

In the numerical results, we perform Monte Carlo simula-
tions in addition to the numerical calculations based on the
analysis results in section Ⅲ to have a double check. First,
we calculate TP by varying the value of µ with µ1 = µ2 =
5.0,K = 50 while λ1 is fixed to 0.9, 1.4, 1.9, 2.4 and λ2 is
fixed to 1.0, 1.5, 2.0, 2.5. The results are shown in Fig. 3.

Fig. 3. Throughputs of the parallel MLS by varying the value of µ.

• The value of TP increases as the arrival rates λ1 = λ2

increase simultaneously.
• The value of TP is almost insensitive to the value of µ.
• The value of TP is the same as the value of arrival rate

for type 1 jobs λ1.
Next, we calculate TP by varying the value of µ1 = µ2

with µ = 7.0,K = 50 while λ1 is fixed to 0.9, 1.4, 1.9, 2.4
and λ2 is fixed to 1.0, 1.5, 2.0, 2.5. The results are shown in
Fig. 4.

Fig. 4. Throughputs of the parallel MLS by varying the value of µ1 = µ2.

• The value of TP increases as the arrival rates λ1 = λ2

increase simultaneously.
• The value of TP is almost insensitive to the value of

µ1 = µ2.
• The value of TP is the same as the value of arrival rate

for type 1 jobs λ1.
In addition, we calculate TP by varying the value of λ1

with λ2 = 2.5, µ1 = µ2 = 5.0, µ = 7.0,K = 50. The results
are shown in Fig. 5.

Fig. 5. Throughputs of the parallel MLS by varying the value of λ1.

In Fig. 5, the value of TP increases linearly when the arrival
rate λ1 increases. This observation suggests that the value of
throughput is the same as the value of arrival rate for type 1
jobs λ1. This is because type 1 jobs are not lost.

Furthermore, we calculate TP by varying the value of λ2

with λ1 = 0.9, µ1 = µ2 = 5.0, µ = 7.0,K = 50. The results
are shown in Fig. 6.

Fig. 6. Throughputs of the parallel MLS by varying the value of λ2.

In Fig. 6, the value of TP is almost insensitive to the value
of λ2.

These observations from Fig. 3 to Fig. 6 suggest that the
value of TP increases as the value of λ1 increases.

B. Shared MLS

First, we calculate TS by varying the value of µ with µ1 =
µ2 = 5.0 while λ1, λ2 are fixed to 1.0, 1.5, 2.0, 2.5. The
results are shown in Fig. 7.

Fig. 7. Throughputs of the shared MLS by varying the value of µ.

• The value of TS increases as the arrival rates λ1 = λ2

increase simultaneously.
• The value of TS is almost insensitive to the value of µ

with λ1 = λ2 = 1.0.
• The value of TS increases as the value of µ increases to

some extent when λ1, λ2 are fixed to 1.5, 2.0, 2.5.
• The value of TS is almost insensitive to the value of µ

from a certain value as λ1, λ2 are fixed to 1.5, 2.0, 2.5.
• The value of TS is at most 2

3 of the arrival rate λ1 = λ2

as the value of µ is increased.
These observations suggest that the value of TS is sensitive

to the value of µ and λ1, λ2 and is at most 2
3 of the arrival

rate λ1 = λ2.
Next, we calculate TS by varying the value of µ1 = µ2

with µ = 7.0 while λ1, λ2 are fixed to 1.0, 1.5, 2.0, 2.5. The
results are shown in Fig. 8.

Fig. 8. Throughputs of the shared MLS by varying the value of µ1 = µ2.

• The value of TS increases as the arrival rates λ1 = λ2

increase simultaneously.
• The value of TS increases as the value of µ1 = µ2

increases to some extent.
• The value of TS is almost insensitive to the value of µ

from a certain value.
• The value of TS is at most 2

3 of the arrival rate λ1 = λ2

as the value of µ increases.
These observations suggest that the value of TS is sensitive

to the value of µ1, µ2 and λ1, λ2 and is at most 2
3 of the arrival

rate λ1 = λ2.
In addition, we calculate TS by varying the value of λ1 = λ2

while µ1, µ2 are fixed to 5.0, 7.0, 9.0, 11.0 and µ is fixed to
7.0, 9.0, 11.0, 13.0. The results are shown in Fig. 9.

Fig. 9. Throughputs of the shared MLS by varying the value of λ1 = λ2.

• The value of TS increases as the arrival rates λ1 = λ2

simultaneously increase to some extent.
• The value of TS is almost insensitive to the value of

λ1, λ2 from a certain value. Furthermore, before the
saturation, TS is equal to 2/3 of λ1 = λ2. The saturated
throughput depends on λ1, λ2, µ1, µ2,mu in a compli-
cated manner and increases as these parameters increase.

Furthermore, we calculate TS by varying the value of λ1

with µ1 = µ2 = 9.0, µ = 11.0 while λ2 are fixed to 1.0, 1.5,
2.0, 2.5. The results are shown in Fig. 10.

Fig. 10. Throughputs of the shared MLS by varying the value of λ1.

• The value of TS increases as the value of λ1 increases
and asymptotes to the value of λ2.

• The value of TS increases as the value of λ2 increases.

C. Comparison of two types of processing methods

By comparing the numerical results of the parallel MLS’s
throughputs and the shared MLS’s throughputs, we obtain the
following observations.

• When each processing rate is sufficiently large, the paral-
lel MLS achieves higher performance than that of shared
MLS while the arrival rates are the same.

• When each processing rate is sufficiently large, the shared
MLS may achieve a better performance than a parallel
MLS if the arrival rate of one type of job can be increased.

Regarding the first observation, for example, when compar-
ing the case where the arrival rates are almost the same, the
value of TS is 1.0 for λ1 = λ2 = 1.5 shown in Fig. 7, while
the value of TP is 1.4 for λ1 = 1.4, λ2 = 1.5 shown in Fig. 3.
This means that using twice the number of modules results in
approximately 1.4 times the performance compared to that of
shared MLS. For example, if a multi-model multi-input MLS
is applied to image diagnosis in the medical field, it may be
difficult to change the arrival rate of the data, such as MRI
images. Therefore, when the arrival rate is the same, a parallel
MLS can achieve higher performance.

Regarding the second observation, for example, the value
of TS is 1.0 for λ1 = λ2 = 1.5 shown in Fig. 7, while
the value of TP is 1.4 for λ1 = 1.4, λ2 = 1.5 shown
in Fig. 3. However, by increasing the arrival rate of the
shared MLS to λ1 = λ2 = 2.5, the value of TS becomes
approximately 1.6, which is higher than the value of TP = 1.4
for λ1 = 1.4, λ2 = 1.5. In another example, the value of TS

is approximately 0.67 for λ1 = λ2 = 1.0 shown in Fig. 10,
but by setting only λ1 to a value of 6.0 or higher in the shared
MLS, the value of TS becomes approximately 1.0, which is
higher than the value of TP = 0.9 for λ1 = 0.9, λ2 = 1.0. This
means that, for example, if a multi-model multi-input MLS
is applied to image recognition of traffic signals and signs
in automated driving, the arrival rate of image data can be
increased by increasing the number and frequency of images
to be recognized by the camera installed in the automated
vehicle. This allows us to achieve higher performance even in
the case of a shared MLS that uses only one module.

VI. IMPLICATIONS TO MLS RELIABILITY

Regardless of the different architectures discussed above,
outputs from MLS are screened by comparing two prediction
results in the comparison unit. If the prediction results are
not consistent, either one of the predictions is wrong, and
hence the comparison unit does not produce the final output.
Therefore, the probability that MLS outputs error can be
decreased by adopting either the parallel MLS or the shared
MLS. While the parallel MLS can exploit the both diversities
of machine learning models and input data (which is referred
to as DMDI architecture in [3]), the shared MLS only benefits
from the input data diversity. Following the reliability model
for N-version machine learning system [3], the parallel MLS
is expected to be higher reliability than the shared MLS.
In contrast to the existing studies, we show the throughput
impacts of a multi-module multi-input MLS. Since the MLS
does not output any results as long as the prediction results
are agreed in the comparison unit, the higher throughput must
be encouraged for applications using the prediction results.

VII. CONCLUSION

In this paper, we proposed queueing models for a multi-
model multi-input MLS into two types of processing schemes;
the parallel MLS and the shared MLS. We defined the through-
put measure on the proposed models. The findings from our
numerical analysis and simulation as follows; i) When the
processing rate µ1, µ2 and µ are sufficiently large, the parallel
MLS achieves a higher throughput than the shared MLS if the
arrival rate λ1, λ2 cannot be changed. ii) The throughput of
the shared MLS improves by increasing the arrival rate λ1, λ2.

As a future work, we would like to model a multi-model
multi-input MLS with more modules and more types of data as
a queueing model and evaluate the performance of the system.

VIII. ACKNOWLEDGEMENT

The second and the third authors were supported in part by
JSPS KAKENHI Grant Numbers 18K18006 and 19K24337,
respectively.

APPENDIX

We describe each of the block matrices used in the in-
finitesimal generators QP and QS defined in section Ⅲ. In
the following, the element in the ith row from the top and
jth column from the left of a block matrix is called the (i, j)

element of that matrix. And for instance, the (i, j) element of
a block matrix A is denoted as (A)i,j .

A. Parallel MLS

In this section, we describe each of the block matrices used
in the infinitesimal generator QP . First, B0 is a (2K+1)-order
square matrix that represents the transition of states such as
the number of type 2 jobs or states of module and comparison
processing when there are no type 1 jobs in the system. Each
element (B0)i,j is defined as follows.

(B0)i,j =

λ2 i = {2, ...,K,K + 2, ..., 2K}, j = i+ 1,

λ2 i = 1, j = K + 2,

µ2 i = {K + 2, ..., 2K + 1}, j = i−K,

Φ0
i,j i = j,

0 (otherwise),

where Φ0
i,j = −

(∑
j ̸=i B0,i,j + λ1

)
.

B1 is a (5K + 1)-order square matrix that represents the
transition of states when there is one job of type 1 in the
system. Each element (B1)i,j is defined as follows.

(B1)i,j =

λ2 i ∈ I1, j = i+ 1,

λ2 (i, j) = (1,K + 3), (2, 3K + 3), (2K + 3, 4K + 3),

µ2 i = {K + 4, ..., 2K + 2}, j = i+ 3K − 1,

µ2 i = {3K + 3, ..., 4K + 2}, j = i− 3K,

µ2 i = {4K + 3, ..., 5K + 1}, j = i− 2K + 1,

µ2 i = K + 3, j = 2K + 3,

µ1 i = {4, ...,K + 2}, j = i+ 4K − 1,

µ1 i = {3K + 3, ...4K + 2}, j = i− 2K,

µ1 i = 3, j = 2K + 3,

Φ1
i,j i = j,

0 (otherwise),

where Φ1
i,j = −

(∑2K+1
j=1 A1,i,j

∑
j ̸=i B1,i,j + λ1

)
, and I1 is

the set defined as follows.

I1 := {3, ...,K + 1,K + 3, ..., 2K + 1, 2K + 4, ..., 3K + 1,

3K + 3, ..., 4K + 1, 4K + 3, ..., 5K}.

B2 is a 7K-order square matrix that represents the transition
of states when there are two or more jobs of type 1 in the
system. Each element (B2)i,j is defined as follows.

(B2)i,j =

λ2 i ∈ I2, j = i+ 1,

λ2 (i, j) = (1,K + 3), (2, 3K + 3),

λ2 (i, j) = (2K + 3, 5K + 3), (4K + 3, 6K + 2),

µ2 i = {K + 4, ..., 2K + 2}, j = i+ 5K − 2,

µ2 i = {3K + 3, ..., 4K + 2}, j = i− 3K,

µ2 i = {5K + 3, ..., 6K + 1}, j = i− 3K + 1,

µ2 i = {6K + 2, ..., 7K}, j = i− 2K + 2,

µ2 i = K + 3, j = 4K + 3,

µ1 i = {4, ...,K + 2}, j = i+ 6K − 2,

µ1 i = {3K + 3, ...5K + 2}, j = i− 2K,

µ1 i = 3, j = 4K + 3,

Φ2
i,j i = j,

0 (otherwise),

where Φ2
i,j = −

(∑5K+1
j=1 A2,i,j

∑
j ̸=i B2,i,j + λ1

)
, and I2 is

the set defined as follows.

I2 := {3, ...,K + 1,K + 3, ..., 2K + 1, 2K + 4, ..., 3K + 1,

3K + 3, ..., 4K + 1, 4K + 4, ..., 5K + 1, 5K + 3, ..., 6K,

6K + 2, ..., 7K − 1}.

C0 is a matrix of size (2K +1)× (5K +1) that represents
the transition of the number of jobs of type 1 from 0 to 1.
Each element (C0)i,j is defined as follows.

(C0)i,j =

λ1 i = {1, ...,K + 1}, j = i+ 1,

λ1 i = {K + 2, ..., 2K + 1}, j = i+ 2K + 1,

0 (otherwise).

C1 is a matrix of size (5K +1)× (7K) that represents the
transition of the number of jobs of type 1 from 1 to 2. Each
element (C1)i,j is defined as follows.

(C1)i,j =

λ1 i = {1, ..., 2K + 2, 3K + 3, ..., 4K + 2}, j = i,

λ1 i = {2K + 3, ..., 3K + 2}, j = i+ 2K,

λ1 i = {4K + 2, ..., 5K + 1}, j = i+ 2K − 1,

0 (otherwise).

C2 is a 7K-order square matrix that represents the transition
of the number of in-system jobs of type 1 from i to i+1 (i ≥
2), defined as

C2 = diag(λ1, ..., λ1).

A1 is a matrix of size (5K +1)× (2K +1) that represents
the transition of the number of jobs of type 1 from 1 to 0.
Each element (A1)i,j is defined as follows. 　

(A1)i,j =

µ i = {2K + 3, ..., 3K + 2}, j = i− 2K − 2,

µ i = {4K + 3, ..., 5K + 1}, j = i− 3K − 1,

0 (otherwise).

A2 is a matrix of size (7K)× (5K +1) that represents the
transition of the number of jobs of type 1 from 2 to 1. Each
element (A2)i,j is defined as follows.

(A2)i,j =

µ i = {2K + 5, ..., 3K + 2}, j = i+ 2K − 2,

µ i = {4K + 3, ..., 5K + 2}, j = i− 4K − 1,

µ i = {5K + 3, ..., 6K + 1}, j = i− 4K,

µ i = {6K + 2, ..., 7K}, j = i− 3K + 1,

µ (i, j) = (2K + 3, 1), (2K + 4, 2K + 3),

0 (otherwise).

A3 is a 7K-order square matrix that represents the transition
of the number of Type 1 jobs from i to i − 1 (i ≥ 3). Each
element (A3)i,j is defined as follows.

(A3)i,j =

µ i = {2K + 5, ..., 3K + 2}, j = i+ 4K − 3,

µ i = {4K + 3, ..., 5K + 2}, j = i− 4K − 1,

µ i = {5K + 3, ..., 6K + 1}, j = i− 4K,

µ i = {6K + 2, ..., 7K}, j = i− 3K + 1,

µ (i, j) = (2K + 3, 1), (2K + 4, 4K + 3),

0 (otherwise).

B. Shared MLS

In this section we describe each of the block matrices used
in the infinitesimal generator QS . First, A0 is a 9th-order
square matrix that represents the transition of the number of
jobs in the buffer from i to i+ 1 (i ≥ 1), defined as follows

A0 = diag(λ1 + λ2, ..., λ1 + λ2).

B0 is a 15th-order square matrix that represents the transi-
tion of states when the number of jobs in the buffer is zero.
Each element (B0)i,j is defined as follows.

(B0)1,3 = (B0)5,7 = (B0)8,10 = (B0)12,14 = λ1,

(B0)1,6 = (B0)2,4 = (B0)8,13 = (B0)9,11 = λ2,

(B0)3,2 = (B0)7,8 = (B0)10,9 = (B0)14,15 = µ1,

(B0)4,8 = (B0)6,5 = (B0)11,15 = (B0)13,12 = µ2,

(B0)8,1 = (B0)9,2 = · · · = (B0)15,8 = µ.

Denoting I := {1, 2, ..., 15}, J := {1, 2, ..., 9}, i ∈ I , we
define the diagonal components of B0 as follows. 　

(B0)i,i = −

 ∑
j∈I\{i}

(B0)i,j +
∑
j∈J

(C0)i,j

 .

The other elements of (B0)i,j are all 0.

C0 is a matrix of size 15× 9 that represents the transition
of the number of jobs in the buffer from 0 to 1. Each element
(C0)i,j is defined as follows.

(C0)3,1 = (C0)4,2 = (C0)6,3 = (C0)7,4 = (C0)10,5 = (C0)11,6

= (C0)13,7 = (C0)14,8 = (C0)15,9 = λ1 + λ2.

The other elements of (C0)i,j are all 0.

Bk (k ≥ 1) is a matrix of size 9 × 15 that represents the
transition of the number of jobs in the buffer from k to 0.
Each element (Bk)i,j is defined as follows.

(Bk)1,2 = (Bk)5,9 = µ1(λ̃1)
k,

(Bk)1,4 = (Bk)5,11 = µ1(λ̃1)
k−1λ̃2,

(Bk)3,7 = (Bk)7,14 = µ2(λ̃2)
k−1λ̃1,

(Bk)3,5 = (Bk)7,12 = µ2(λ̃2)
k.

Also, we define the following elements (B1)i,j .

(B1)4,10 = µ1λ̃1, (B1)4,13 = µ1λ̃2,

(B1)2,10 = µ2λ̃1, (B1)2,13 = µ2λ̃2,

(B1)9,3 = µλ̃1, (B1)9,6 = µλ̃2.

The other elements of (Bk)i,j (k ≥ 1) are all 0.

A1 is a 9th-order square matrix that represents the transition
of other states when the number of jobs in the buffer is greater
than or equal to 1. Each element (A1)i,j is defined as follows.

(A1)8,9 = µ1, (A1)6,9 = µ2,

(A1)5,1 = (A1)6,2 = (A1)7,3 = (A1)8,4 = µ.

Denoting I := {1, 2, ..., 9}, J := {1, 2, ..., 15}, i ∈ I , we
define the diagonal components of A1 as follows.

(A1)i,i = −

∑
j∈J

(B1)i,j +
∑

j∈I\{i}

(A1)i,j +
∑
j∈I

(A0)i,j

 .

The other elements of (A1)i,j are all 0.

Ak (k ≥ 2) is a 9th-order square matrix that represents the
transition of the number of jobs in the buffer decreasing by
k − 1. Each element (Ak)i,j is defined as follows.

(Ak)1,2 = (Ak)5,6 = µ1(λ̃1)
k−2λ̃2,

(Ak)3,4 = (Ak)7,8 = µ2(λ̃2)
k−2λ̃1.

Also, we define the following elements (A2)i,j .

(A2)4,5 = µ1λ̃1, (A2)4,7 = µ1λ̃2, (A2)2,5 = µ2λ̃1,

(A2)2,7 = µ2λ̃2, (A2)9,1 = µλ̃1, (A2)9,3 = µλ̃2.

　
The other elements of (Ak)i,j (k ≥ 2) are all 0.

REFERENCES

[1] I. Goodfellow, J. Shlens, and C. Szegedy, Explaining and Harnessing
Adversarial Examples, https://arxiv.org/abs/1412.6572, 2014.

[2] X. Huang, M. Kwiatkowska, S. Wang, M. Wu, Safety Verification
of Deep Neural Networks, In Proc. of International Conference on
Computer Aided Verification, pp. 3-29, 2017.

[3] F. Machida, N-version machine learning models for safety critical
systems, 2019 49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops, 2019.

[4] Latouche, G., Ramaswami, V., Introduction to matrix analytic methods
in stochastic modeling, Society for Industrial and Applied Mathematics,
1999.

[5] Adan I., Leeuwaarden V.J., Selen J., “Analysis of structured Markov
processes,” arXiv:1709.09060v1, 2017.

[6] E. Wong and Z. Kolter, Provable defenses against adversarial examples
via the convex outer adversarial polytope, in International Conference
on Machine Learning, pp. 5286-5295, 2018.

[7] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, Machine learning
testing: Survey, landscapes and horizons, IEEE Transactions on Software
Engineering, 2020.

[8] Y. Tian, K. Pei, S. Jana, and B. Ray, Deeptest: Automated testing of
deep-neural-network-driven autonomous cars, in Proceedings of the 40th
international conference on software engineering, pp. 303-314, 2018.

[9] C. Murphy, G. E. Kaiser, and M. Arias, An approach to software testing
of machine learning applications. In SEKE, vol. 167, 2007.

[10] W. Wu, H. Xu, S. Zhong, M. Lyu, and I. King. Deep validation: Toward
detecting real-world corner cases for deep neural networks. In Proc. of
the 49th IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), pp. 125-137, 2019.

[11] F. Machida, On the diversity of machine learning models for system
reliability, IEEE Pacific Rim Int’l Symp. on Dependable Computing
(PRDC), pp. 276-285, 2019.

[12] H. Xu, Z. Chen, W. Wu, Z. Jin, S. Kuo, M. R. Lyu, NV-DNN: towards
fault-tolerant DNN systems with N-version programming, In Proc. of
the DSN Workshop on Dependable and Secure Machine Learning, pp.
44-47, 2019.

[13] A. Gujarati, S. Gopalakrishnan, and K. Pattabiraman, New wine in an
old bottle: N-version programming for machine learning components, in
2020 IEEE International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), pp. 283-286, 2020.

[14] S. Latifi, B. Zamirai, and S. Mahlke, PolygraphMR: Enhancing the
reliability and dependability of CNNs, in 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pp. 99-112, 2020.

